Nuprl Lemma : pa-sep_wf
∀[p:{2...}]. ∀[x,y:basic-padic(p)].  (pa-sep(p;x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
pa-sep: pa-sep(p;x;y), 
basic-padic: basic-padic(p), 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pa-sep: pa-sep(p;x;y), 
basic-padic: basic-padic(p), 
nat: ℕ, 
nat_plus: ℕ+, 
int_upper: {i...}, 
le: A ≤ B, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
top: Top, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
or_wf, 
not_wf, 
equal_wf, 
p-sep_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
basic-padic_wf, 
int_upper_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
intEquality, 
setElimination, 
rename, 
hypothesis, 
dependent_set_memberEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[p:\{2...\}].  \mforall{}[x,y:basic-padic(p)].    (pa-sep(p;x;y)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-03_28_19
Last ObjectModification:
2018_05_19-AM-08_24_27
Theory : rings_1
Home
Index