Nuprl Lemma : ringeq_int_terms_inversion
∀[r:Rng]. ∀[t1,t2:int_term()].  t1 ≡ t2 supposing t2 ≡ t1
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2, 
rng: Rng, 
int_term: int_term(), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
true: True, 
rng: Rng, 
prop: ℙ, 
squash: ↓T, 
all: ∀x:A. B[x], 
ringeq_int_terms: t1 ≡ t2, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
int_term_wf, 
ringeq_int_terms_wf, 
iff_weakening_equal, 
ring_term_value_wf, 
rng_car_wf, 
true_wf, 
squash_wf, 
equal_wf
Rules used in proof : 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
natural_numberEquality, 
intEquality, 
functionExtensionality, 
dependent_functionElimination, 
rename, 
setElimination, 
universeEquality, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
imageElimination, 
lambdaEquality, 
thin, 
applyEquality, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[t1,t2:int\_term()].    t1  \mequiv{}  t2  supposing  t2  \mequiv{}  t1
Date html generated:
2018_05_21-PM-03_16_04
Last ObjectModification:
2018_01_25-PM-02_18_38
Theory : rings_1
Home
Index