Nuprl Lemma : rng_sum_is_0
∀[r:Rng]. ∀[a,b:ℤ]. ∀[F:{a..b-} ⟶ |r|].
  (Σ(r) a ≤ j < b. F[j]) = 0 ∈ |r| supposing (a ≤ b) ∧ (∀j:{a..b-}. (F[j] = 0 ∈ |r|))
Proof
Definitions occuring in Statement : 
rng_sum: rng_sum, 
rng: Rng
, 
rng_zero: 0
, 
rng_car: |r|
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
squash: ↓T
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_zero_wf, 
all_wf, 
le_wf, 
iff_weakening_equal, 
rng_wf, 
int_seg_wf, 
true_wf, 
squash_wf, 
rng_sum_wf, 
rng_car_wf, 
equal_wf, 
rng_sum_0
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
functionExtensionality, 
productEquality, 
independent_functionElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
dependent_functionElimination, 
intEquality, 
functionEquality, 
equalityTransitivity, 
rename, 
setElimination, 
because_Cache, 
imageElimination, 
lambdaEquality, 
applyEquality, 
sqequalRule, 
equalitySymmetry, 
hyp_replacement, 
independent_isectElimination, 
productElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:\mBbbZ{}].  \mforall{}[F:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].
    (\mSigma{}(r)  a  \mleq{}  j  <  b.  F[j])  =  0  supposing  (a  \mleq{}  b)  \mwedge{}  (\mforall{}j:\{a..b\msupminus{}\}.  (F[j]  =  0))
Date html generated:
2018_05_21-PM-03_15_19
Last ObjectModification:
2018_01_02-PM-02_26_34
Theory : rings_1
Home
Index