Nuprl Lemma : rng_sum_is_0

[r:Rng]. ∀[a,b:ℤ]. ∀[F:{a..b-} ⟶ |r|].
  (r) a ≤ j < b. F[j]) 0 ∈ |r| supposing (a ≤ b) ∧ (∀j:{a..b-}. (F[j] 0 ∈ |r|))


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_zero: 0 rng_car: |r| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True all: x:A. B[x] so_lambda: λ2x.t[x] rng: Rng squash: T prop: and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_zero_wf all_wf le_wf iff_weakening_equal rng_wf int_seg_wf true_wf squash_wf rng_sum_wf rng_car_wf equal_wf rng_sum_0
Rules used in proof :  axiomEquality isect_memberEquality functionExtensionality productEquality independent_functionElimination baseClosed imageMemberEquality natural_numberEquality dependent_functionElimination intEquality functionEquality equalityTransitivity rename setElimination because_Cache imageElimination lambdaEquality applyEquality sqequalRule equalitySymmetry hyp_replacement independent_isectElimination productElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:\mBbbZ{}].  \mforall{}[F:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].
    (\mSigma{}(r)  a  \mleq{}  j  <  b.  F[j])  =  0  supposing  (a  \mleq{}  b)  \mwedge{}  (\mforall{}j:\{a..b\msupminus{}\}.  (F[j]  =  0))



Date html generated: 2018_05_21-PM-03_15_19
Last ObjectModification: 2018_01_02-PM-02_26_34

Theory : rings_1


Home Index