Step
*
of Lemma
rng_sum_split
∀[r:Rng]. ∀[a,b,c:ℤ].
(∀[E:{a..c-} ⟶ |r|]. ((Σ(r) a ≤ j < c. E[j]) = ((Σ(r) a ≤ j < b. E[j]) +r (Σ(r) b ≤ j < c. E[j])) ∈ |r|)) supposing
((b ≤ c) and
(a ≤ b))
BY
{ ProveSpecializedLemma `mon_itop_split` 1 [parm{i};r↓+gp] (FoldC `rng_sum` ANDTHENC AbReduceC) }
Latex:
Latex:
\mforall{}[r:Rng]. \mforall{}[a,b,c:\mBbbZ{}].
(\mforall{}[E:\{a..c\msupminus{}\} {}\mrightarrow{} |r|]
((\mSigma{}(r) a \mleq{} j < c. E[j]) = ((\mSigma{}(r) a \mleq{} j < b. E[j]) +r (\mSigma{}(r) b \mleq{} j < c. E[j])))) supposing
((b \mleq{} c) and
(a \mleq{} b))
By
Latex:
ProveSpecializedLemma `mon\_itop\_split` 1 [parm\{i\};r\mdownarrow{}+gp] (FoldC `rng\_sum` ANDTHENC AbReduceC)
Home
Index