Nuprl Lemma : rng_sum_split
∀[r:Rng]. ∀[a,b,c:ℤ].
  (∀[E:{a..c-} ⟶ |r|]. ((Σ(r) a ≤ j < c. E[j]) = ((Σ(r) a ≤ j < b. E[j]) +r (Σ(r) b ≤ j < c. E[j])) ∈ |r|)) supposing 
     ((b ≤ c) and 
     (a ≤ b))
Proof
Definitions occuring in Statement : 
rng_sum: rng_sum, 
rng: Rng
, 
rng_plus: +r
, 
rng_car: |r|
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
le: A ≤ B
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
grp: Group{i}
, 
mon: Mon
, 
imon: IMonoid
, 
prop: ℙ
, 
rng_sum: rng_sum, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
uimplies: b supposing a
, 
rng: Rng
Lemmas referenced : 
mon_itop_split, 
add_grp_of_rng_wf_a, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
int_seg_wf, 
rng_car_wf, 
le_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b,c:\mBbbZ{}].
    (\mforall{}[E:\{a..c\msupminus{}\}  {}\mrightarrow{}  |r|]
          ((\mSigma{}(r)  a  \mleq{}  j  <  c.  E[j])  =  ((\mSigma{}(r)  a  \mleq{}  j  <  b.  E[j])  +r  (\mSigma{}(r)  b  \mleq{}  j  <  c.  E[j]))))  supposing 
          ((b  \mleq{}  c)  and 
          (a  \mleq{}  b))
Date html generated:
2016_05_15-PM-00_28_14
Last ObjectModification:
2015_12_26-PM-11_58_15
Theory : rings_1
Home
Index