Nuprl Lemma : rng_times_when_r
∀[r:Rng]. ∀[u,v:|r|]. ∀[b:𝔹].  (((when b. u) * v) = (when b. (u * v)) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_when: rng_when, 
rng: Rng, 
rng_times: *, 
rng_car: |r|, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rng_when: rng_when, 
mon_when: when b. p, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
add_grp_of_rng: r↓+gp, 
grp_id: e, 
pi2: snd(t), 
pi1: fst(t), 
rng: Rng, 
squash: ↓T, 
prop: ℙ, 
and: P ∧ Q, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
bool_wf, 
rng_car_wf, 
rng_wf, 
infix_ap_wf, 
rng_times_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_times_zero, 
rng_zero_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[r:Rng].  \mforall{}[u,v:|r|].  \mforall{}[b:\mBbbB{}].    (((when  b.  u)  *  v)  =  (when  b.  (u  *  v)))
Date html generated:
2017_10_01-AM-08_19_47
Last ObjectModification:
2017_02_28-PM-02_04_18
Theory : rings_1
Home
Index