Nuprl Lemma : sq_stable__integ_dom_p

[r:CRng]. SqStable(IsIntegDom(r))


Proof




Definitions occuring in Statement :  integ_dom_p: IsIntegDom(r) crng: CRng sq_stable: SqStable(P) uall: [x:A]. B[x]
Definitions unfolded in proof :  integ_dom_p: IsIntegDom(r) uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q and: P ∧ Q nequal: a ≠ b ∈  not: ¬A false: False crng: CRng rng: Rng prop: all: x:A. B[x] infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf rng_car_wf rng_zero_wf rng_one_wf rng_times_wf not_wf squash_wf nequal_wf all_wf infix_ap_wf crng_wf sq_stable__and sq_stable__not sq_stable__all sq_stable__equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality voidElimination extract_by_obid isectElimination setElimination rename hypothesis because_Cache axiomEquality applyEquality productEquality functionEquality isect_memberEquality independent_functionElimination lambdaFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:CRng].  SqStable(IsIntegDom(r))



Date html generated: 2017_10_01-AM-08_17_35
Last ObjectModification: 2017_02_28-PM-02_02_57

Theory : rings_1


Home Index