Nuprl Lemma : sq_stable__prime_ideal
∀r:CRng. ∀p:Ideal(r){i}.  ((∀u:|r|. Dec(p u)) 
⇒ SqStable(IsPrimeIdeal(r;p)))
Proof
Definitions occuring in Statement : 
prime_ideal_p: IsPrimeIdeal(R;P)
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng_car: |r|
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
ideal: Ideal(r){i}
, 
so_apply: x[s]
, 
prime_ideal_p: IsPrimeIdeal(R;P)
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
infix_ap: x f y
Lemmas referenced : 
all_wf, 
rng_car_wf, 
decidable_wf, 
ideal_wf, 
crng_wf, 
sq_stable__and, 
not_wf, 
rng_one_wf, 
infix_ap_wf, 
rng_times_wf, 
or_wf, 
sq_stable__not, 
sq_stable__all, 
sq_stable_from_decidable, 
decidable__or
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}r:CRng.  \mforall{}p:Ideal(r)\{i\}.    ((\mforall{}u:|r|.  Dec(p  u))  {}\mRightarrow{}  SqStable(IsPrimeIdeal(r;p)))
Date html generated:
2016_05_15-PM-00_24_46
Last ObjectModification:
2015_12_27-AM-00_00_15
Theory : rings_1
Home
Index