Nuprl Lemma : assert_of_set_leq
∀[p:PosetSig]. ∀[a,b:|p|].  uiff(↑(a (≤b) b);a ≤ b)
Proof
Definitions occuring in Statement : 
set_leq: a ≤ b, 
set_le: ≤b, 
set_car: |p|, 
poset_sig: PosetSig, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
infix_ap: x f y
Definitions unfolded in proof : 
set_leq: a ≤ b, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
infix_ap: x f y, 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
assert_witness, 
set_le_wf, 
assert_wf, 
set_car_wf, 
poset_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[p:PosetSig].  \mforall{}[a,b:|p|].    uiff(\muparrow{}(a  (\mleq{}\msubb{})  b);a  \mleq{}  b)
Date html generated:
2016_05_15-PM-00_04_13
Last ObjectModification:
2015_12_26-PM-11_28_44
Theory : sets_1
Home
Index