Nuprl Lemma : mk_oset_wf
∀[T:Type]. ∀[eq,leq:T ⟶ T ⟶ 𝔹].
  (mk_oset(T;eq;leq) ∈ LOSet) supposing (UniformLinorder(T;a,b.↑(a leq b)) and IsEqFun(T;eq))
Proof
Definitions occuring in Statement : 
mk_oset: mk_oset(T;eq;leq), 
loset: LOSet, 
ulinorder: UniformLinorder(T;x,y.R[x; y]), 
eqfun_p: IsEqFun(T;eq), 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
mk_oset: mk_oset(T;eq;leq), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
infix_ap: x f y, 
so_apply: x[s1;s2], 
ulinorder: UniformLinorder(T;x,y.R[x; y]), 
and: P ∧ Q, 
uorder: UniformOrder(T;x,y.R[x; y]), 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset: DSet, 
poset_sig: PosetSig, 
set_car: |p|, 
pi1: fst(t), 
set_eq: =b, 
pi2: snd(t), 
set_leq: a ≤ b, 
set_le: ≤b, 
upreorder: UniformPreorder(T;x,y.R[x; y])
Lemmas referenced : 
ulinorder_wf, 
assert_wf, 
eqfun_p_wf, 
bool_wf, 
set_car_wf, 
set_eq_wf, 
upreorder_wf, 
set_leq_wf, 
uanti_sym_wf, 
connex_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
productElimination, 
dependent_set_memberEquality, 
dependent_pairEquality, 
productEquality, 
independent_pairFormation, 
setElimination, 
rename
Latex:
\mforall{}[T:Type].  \mforall{}[eq,leq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].
    (mk\_oset(T;eq;leq)  \mmember{}  LOSet)  supposing  (UniformLinorder(T;a,b.\muparrow{}(a  leq  b))  and  IsEqFun(T;eq))
Date html generated:
2018_05_21-PM-03_13_56
Last ObjectModification:
2018_05_19-AM-08_26_35
Theory : sets_1
Home
Index