Nuprl Lemma : fps-alg_wf
∀[X:Type]. ∀[eq:EqDecider(X)].  ∀[r:CRng]. (fps-alg(X;eq;r) ∈ CAlg(r)) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-alg: fps-alg(X;eq;r), 
calgebra: CAlg(A), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
crng: CRng, 
rng: Rng, 
prop: ℙ, 
calgebra: CAlg(A), 
algebra: algebra{i:l}(A), 
module: A-Module, 
cand: A c∧ B, 
alg_car: a.car, 
pi1: fst(t), 
fps-alg: fps-alg(X;eq;r), 
power-series: PowerSeries(X;r), 
alg_act: a.act, 
pi2: snd(t), 
alg_plus: a.plus, 
all: ∀x:A. B[x], 
alg_times: a.times, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rng_car: |r|, 
fps-rng: fps-rng(r), 
rng_times: *, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
rng_plus: +r, 
rng_zero: 0, 
rng_minus: -r, 
alg_zero: a.zero, 
alg_minus: a.minus, 
rng_one: 1, 
alg_one: a.one, 
algebra_sig: algebra_sig{i:l}(A), 
comm: Comm(T;op), 
infix_ap: x f y, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].    \mforall{}[r:CRng].  (fps-alg(X;eq;r)  \mmember{}  CAlg(r))  supposing  valueall-type(X)
 Date html generated: 
2016_05_16-AM-08_12_31
 Last ObjectModification: 
2015_12_28-PM-06_07_36
Theory : instances
Home
Index