Nuprl Lemma : oal_equal_char
∀a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|.  (ps = qs ∈ |oal(a;b)| ⇐⇒ ∀u:|a|. ((ps[u]) = (qs[u]) ∈ |b|))
Proof
Definitions occuring in Statement : 
lookup: as[k], 
oalist: oal(a;b), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset: DSet, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
so_apply: x[s], 
squash: ↓T, 
true: True, 
uimplies: b supposing a, 
guard: {T}
Lemmas referenced : 
set_car_wf, 
equal_wf, 
oalist_wf, 
dset_wf, 
all_wf, 
grp_car_wf, 
lookup_wf, 
grp_id_wf, 
abdmonoid_wf, 
loset_wf, 
squash_wf, 
true_wf, 
list_wf, 
poset_sig_wf, 
iff_weakening_equal, 
lookups_same_a
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productEquality, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:|oal(a;b)|.    (ps  =  qs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}u:|a|.  ((ps[u])  =  (qs[u])))
Date html generated:
2017_10_01-AM-10_02_26
Last ObjectModification:
2017_03_03-PM-01_04_42
Theory : polynom_2
Home
Index