Nuprl Lemma : oal_neg_sd_ordered
∀a:LOSet. ∀b:AbMon. ∀ps:(|a| × |b|) List.  ((↑sd_ordered(map(λx.(fst(x));ps))) ⇒ (↑sd_ordered(map(λx.(fst(x));--ps))))
Proof
Definitions occuring in Statement : 
oal_neg: --ps, 
sd_ordered: sd_ordered(as), 
map: map(f;as), 
list: T List, 
assert: ↑b, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x], 
product: x:A × B[x], 
abmonoid: AbMon, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
and: P ∧ Q, 
uiff: uiff(P;Q), 
guard: {T}, 
true: True, 
prop: ℙ, 
squash: ↓T, 
uimplies: b supposing a, 
pi1: fst(t), 
mon: Mon, 
abmonoid: AbMon, 
dset: DSet, 
qoset: QOSet, 
poset: POSet{i}, 
loset: LOSet, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
assert_functionality_wrt_uiff, 
sd_ordered_wf, 
map_wf, 
set_car_wf, 
grp_car_wf, 
oal_neg_wf, 
squash_wf, 
true_wf, 
list_wf, 
dset_wf, 
oal_neg_keys_invar, 
assert_wf, 
abmonoid_wf, 
loset_wf
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
productElimination, 
lambdaEquality, 
because_Cache, 
productEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbMon.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));ps)))  {}\mRightarrow{}  (\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));--ps))))
 Date html generated: 
2016_05_16-AM-08_19_06
 Last ObjectModification: 
2016_01_16-PM-11_57_14
Theory : polynom_2
Home
Index