Step
*
1
2
of Lemma
surject_implies_decidble_eq2
1. T : Type@i'
2. f : 
 
 T@i
3. h : 
b:T. 
a:
. ((f a) = b)@i
4. t1 : T@i
5. t2 : T@i
6. 
g:T 
 
. 
b:T. ((f (g b)) = b)
 (t1 = t2) 
 (
(t1 = t2))
BY
{ (D (-1) THEN (Assert Dec((g t1) = (g t2)) BY Auto)) }
1
1. T : Type@i'
2. f : 
 
 T@i
3. h : 
b:T. 
a:
. ((f a) = b)@i
4. t1 : T@i
5. t2 : T@i
6. g : T 
 
7. 
b:T. ((f (g b)) = b)
8. Dec((g t1) = (g t2))
 (t1 = t2) 
 (
(t1 = t2))
1.  T  :  Type@i'
2.  f  :  \mBbbN{}  {}\mrightarrow{}  T@i
3.  h  :  \mforall{}b:T.  \mexists{}a:\mBbbN{}.  ((f  a)  =  b)@i
4.  t1  :  T@i
5.  t2  :  T@i
6.  \mexists{}g:T  {}\mrightarrow{}  \mBbbN{}.  \mforall{}b:T.  ((f  (g  b))  =  b)
\mvdash{}  (t1  =  t2)  \mvee{}  (\mneg{}(t1  =  t2))
By
(D  (-1)  THEN  (Assert  Dec((g  t1)  =  (g  t2))  BY  Auto))
Home
Index