Step
*
1
2
of Lemma
State-class-es-sv1
1. Info : Type
2. A : Type
3. B : Type
4. es : EO+(Info)
5. f : A ⟶ B ⟶ B
6. X : EClass(A)
7. init : Id ⟶ bag(B)
8. es-sv-class(es;X)
9. ∀l:Id. (#(init l) ≤ 1)
10. bs : k:ℕ2 ⟶ bag([A; B][k])@i
11. ∀k:ℕ2. (#(bs k) ≤ 1)@i
⊢ #(if bag-null(bs 0) then bs 1 else lifting-2(f) (bs 0) (bs 1) fi ) ≤ 1
BY
{ ((SplitOnConclITE THENA MaAuto)
THEN Try (Complete ((BHyp (-2) THENA Auto)))
THEN (InstHyp [⌜0⌝] (-2)⋅ THENA Auto)
THEN (InstHyp [⌜1⌝] (-3)⋅ THENA Auto)
THEN RepUR ``lifting-2 lifting2 lifting-gen-rev`` 0
THEN RepeatFor 3 ((RecUnfold `lifting-gen-list-rev` 0 THEN Reduce 0))
THEN (Assert ⌜(#(bs 0) = 0 ∈ ℤ) ∨ (#(bs 0) = 1 ∈ ℤ)⌝⋅ THENA Auto')
THEN D (-1)) }
1
1. Info : Type
2. A : Type
3. B : Type
4. es : EO+(Info)
5. f : A ⟶ B ⟶ B
6. X : EClass(A)
7. init : Id ⟶ bag(B)
8. es-sv-class(es;X)
9. ∀l:Id. (#(init l) ≤ 1)
10. bs : k:ℕ2 ⟶ bag([A; B][k])@i
11. ∀k:ℕ2. (#(bs k) ≤ 1)@i
12. ¬((bs 0) = {} ∈ bag([A; B][0]))
13. #(bs 0) ≤ 1
14. #(bs 1) ≤ 1
15. #(bs 0) = 0 ∈ ℤ
⊢ #(⋃x∈bs 0.⋃x@0∈bs 1.{f x x@0}) ≤ 1
2
1. Info : Type
2. A : Type
3. B : Type
4. es : EO+(Info)
5. f : A ⟶ B ⟶ B
6. X : EClass(A)
7. init : Id ⟶ bag(B)
8. es-sv-class(es;X)
9. ∀l:Id. (#(init l) ≤ 1)
10. bs : k:ℕ2 ⟶ bag([A; B][k])@i
11. ∀k:ℕ2. (#(bs k) ≤ 1)@i
12. ¬((bs 0) = {} ∈ bag([A; B][0]))
13. #(bs 0) ≤ 1
14. #(bs 1) ≤ 1
15. #(bs 0) = 1 ∈ ℤ
⊢ #(⋃x∈bs 0.⋃x@0∈bs 1.{f x x@0}) ≤ 1
Latex:
Latex:
1. Info : Type
2. A : Type
3. B : Type
4. es : EO+(Info)
5. f : A {}\mrightarrow{} B {}\mrightarrow{} B
6. X : EClass(A)
7. init : Id {}\mrightarrow{} bag(B)
8. es-sv-class(es;X)
9. \mforall{}l:Id. (\#(init l) \mleq{} 1)
10. bs : k:\mBbbN{}2 {}\mrightarrow{} bag([A; B][k])@i
11. \mforall{}k:\mBbbN{}2. (\#(bs k) \mleq{} 1)@i
\mvdash{} \#(if bag-null(bs 0) then bs 1 else lifting-2(f) (bs 0) (bs 1) fi ) \mleq{} 1
By
Latex:
((SplitOnConclITE THENA MaAuto)
THEN Try (Complete ((BHyp (-2) THENA Auto)))
THEN (InstHyp [\mkleeneopen{}0\mkleeneclose{}] (-2)\mcdot{} THENA Auto)
THEN (InstHyp [\mkleeneopen{}1\mkleeneclose{}] (-3)\mcdot{} THENA Auto)
THEN RepUR ``lifting-2 lifting2 lifting-gen-rev`` 0
THEN RepeatFor 3 ((RecUnfold `lifting-gen-list-rev` 0 THEN Reduce 0))
THEN (Assert \mkleeneopen{}(\#(bs 0) = 0) \mvee{} (\#(bs 0) = 1)\mkleeneclose{}\mcdot{} THENA Auto')
THEN D (-1))
Home
Index