Step
*
1
1
2
of Lemma
State-comb-classrel-class
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ (∀v:B. (v ∈ State-comb(init;f;X)(e')
⇐⇒ v ∈ State-class(init;f;X)(e'))))
10. v : B@i
11. ∀e':E. ((e' <loc e)
⇒ (∀w:B. (¬w ∈ State-comb(init;f;X)(e'))))
12. v ↓∈ init loc(e)
13. (X es e) = {} ∈ bag(A)
⊢ iterated_classrel(es;B;A;f;init;X;e;v)
BY
{ (RecUnfold `iterated_classrel` 0 THEN D 0 THEN (InstConcl [⌜v⌝]⋅ THENA MaAuto) THEN (SplitOnConclITE THENA MaAuto)) }
1
.....truecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ (∀v:B. (v ∈ State-comb(init;f;X)(e')
⇐⇒ v ∈ State-class(init;f;X)(e'))))
10. v : B@i
11. ∀e':E. ((e' <loc e)
⇒ (∀w:B. (¬w ∈ State-comb(init;f;X)(e'))))
12. v ↓∈ init loc(e)
13. (X es e) = {} ∈ bag(A)
14. ↑first(e)
⊢ v ↓∈ init loc(e) ∧ ((∃a:A. (a ∈ X(e) ∧ (v = (f a v) ∈ B))) ∨ ((∀a:A. (¬a ∈ X(e))) ∧ (v = v ∈ B)))
2
.....falsecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ (∀v:B. (v ∈ State-comb(init;f;X)(e')
⇐⇒ v ∈ State-class(init;f;X)(e'))))
10. v : B@i
11. ∀e':E. ((e' <loc e)
⇒ (∀w:B. (¬w ∈ State-comb(init;f;X)(e'))))
12. v ↓∈ init loc(e)
13. (X es e) = {} ∈ bag(A)
14. ¬↑first(e)
⊢ iterated_classrel(es;B;A;f;init;X;pred(e);v)
∧ ((∃a:A. (a ∈ X(e) ∧ (v = (f a v) ∈ B))) ∨ ((∀a:A. (¬a ∈ X(e))) ∧ (v = v ∈ B)))
Latex:
Latex:
1. Info : Type
2. B : Type
3. A : Type
4. f : A {}\mrightarrow{} B {}\mrightarrow{} B
5. init : Id {}\mrightarrow{} bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. \mforall{}e':E. ((e' < e) {}\mRightarrow{} (\mforall{}v:B. (v \mmember{} State-comb(init;f;X)(e') \mLeftarrow{}{}\mRightarrow{} v \mmember{} State-class(init;f;X)(e'))))
10. v : B@i
11. \mforall{}e':E. ((e' <loc e) {}\mRightarrow{} (\mforall{}w:B. (\mneg{}w \mmember{} State-comb(init;f;X)(e'))))
12. v \mdownarrow{}\mmember{} init loc(e)
13. (X es e) = \{\}
\mvdash{} iterated\_classrel(es;B;A;f;init;X;e;v)
By
Latex:
(RecUnfold `iterated\_classrel` 0
THEN D 0
THEN (InstConcl [\mkleeneopen{}v\mkleeneclose{}]\mcdot{} THENA MaAuto)
THEN (SplitOnConclITE THENA MaAuto))
Home
Index