Step
*
1
of Lemma
State-comb-classrel-mem2
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. v ∈ State-comb(init;f;X)(e)@i
⊢ if e ∈b X
then ↓∃w:B. ∃a:A. (w ∈ Memory-class(f;init;X)(e) ∧ (v = (f a w) ∈ B) ∧ a ∈ X(e))
else v ∈ Memory-class(f;init;X)(e)
fi
BY
{ (MaUseClassRel (-1) THEN RecUnfold `iterated_classrel` (-1) THEN (SplitOnHypITE (-1) THENA Auto)) }
1
.....truecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. ↓∃z@0:B. (z@0 ↓∈ init loc(e) ∧ ((∃a:A. (a ∈ X(e) ∧ (v = (f a z@0) ∈ B))) ∨ ((∀a:A. (¬a ∈ X(e))) ∧ (v = z@0 ∈ B))))
11. ↑first(e)
⊢ if e ∈b X
then ↓∃w:B. ∃a:A. (w ∈ Memory-class(f;init;X)(e) ∧ (v = (f a w) ∈ B) ∧ a ∈ X(e))
else v ∈ Memory-class(f;init;X)(e)
fi
2
.....falsecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. ↓∃z@0:B
(iterated_classrel(es;B;A;f;init;X;pred(e);z@0)
∧ ((∃a:A. (a ∈ X(e) ∧ (v = (f a z@0) ∈ B))) ∨ ((∀a:A. (¬a ∈ X(e))) ∧ (v = z@0 ∈ B))))
11. ¬↑first(e)
⊢ if e ∈b X
then ↓∃w:B. ∃a:A. (w ∈ Memory-class(f;init;X)(e) ∧ (v = (f a w) ∈ B) ∧ a ∈ X(e))
else v ∈ Memory-class(f;init;X)(e)
fi
Latex:
Latex:
1. Info : Type
2. B : Type
3. A : Type
4. f : A {}\mrightarrow{} B {}\mrightarrow{} B
5. init : Id {}\mrightarrow{} bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. v \mmember{} State-comb(init;f;X)(e)@i
\mvdash{} if e \mmember{}\msubb{} X
then \mdownarrow{}\mexists{}w:B. \mexists{}a:A. (w \mmember{} Memory-class(f;init;X)(e) \mwedge{} (v = (f a w)) \mwedge{} a \mmember{} X(e))
else v \mmember{} Memory-class(f;init;X)(e)
fi
By
Latex:
(MaUseClassRel (-1) THEN RecUnfold `iterated\_classrel` (-1) THEN (SplitOnHypITE (-1) THENA Auto))
Home
Index