Step
*
1
2
of Lemma
State-comb-classrel-mem2
.....falsecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. ↓∃z@0:B
(iterated_classrel(es;B;A;f;init;X;pred(e);z@0)
∧ ((∃a:A. (a ∈ X(e) ∧ (v = (f a z@0) ∈ B))) ∨ ((∀a:A. (¬a ∈ X(e))) ∧ (v = z@0 ∈ B))))
11. ¬↑first(e)
⊢ if e ∈b X
then ↓∃w:B. ∃a:A. (w ∈ Memory-class(f;init;X)(e) ∧ (v = (f a w) ∈ B) ∧ a ∈ X(e))
else v ∈ Memory-class(f;init;X)(e)
fi
BY
{ (TrySquashExRepD (-2) THEN Try (Complete ((OldAutoSplit THEN Auto))) THEN OldAutoSplit THEN SplitOrHyps THEN ExRepD) }
1
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. z@0 : B
11. iterated_classrel(es;B;A;f;init;X;pred(e);z@0)
12. a : A
13. a ∈ X(e)
14. v = (f a z@0) ∈ B
15. ¬↑first(e)
16. ↑e ∈b X
⊢ ↓∃w:B. ∃a:A. (w ∈ Memory-class(f;init;X)(e) ∧ (v = (f a w) ∈ B) ∧ a ∈ X(e))
2
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. z@0 : B
11. iterated_classrel(es;B;A;f;init;X;pred(e);z@0)
12. ∀a:A. (¬a ∈ X(e))
13. v = z@0 ∈ B
14. ¬↑first(e)
15. ↑e ∈b X
⊢ ↓∃w:B. ∃a:A. (w ∈ Memory-class(f;init;X)(e) ∧ (v = (f a w) ∈ B) ∧ a ∈ X(e))
3
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. z@0 : B
11. iterated_classrel(es;B;A;f;init;X;pred(e);z@0)
12. a : A
13. a ∈ X(e)
14. v = (f a z@0) ∈ B
15. ¬↑first(e)
16. ¬↑e ∈b X
⊢ v ∈ Memory-class(f;init;X)(e)
4
1. Info : Type
2. B : Type
3. A : Type
4. f : A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. z@0 : B
11. iterated_classrel(es;B;A;f;init;X;pred(e);z@0)
12. ∀a:A. (¬a ∈ X(e))
13. v = z@0 ∈ B
14. ¬↑first(e)
15. ¬↑e ∈b X
⊢ v ∈ Memory-class(f;init;X)(e)
Latex:
Latex:
.....falsecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A {}\mrightarrow{} B {}\mrightarrow{} B
5. init : Id {}\mrightarrow{} bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. \mdownarrow{}\mexists{}z@0:B
(iterated\_classrel(es;B;A;f;init;X;pred(e);z@0)
\mwedge{} ((\mexists{}a:A. (a \mmember{} X(e) \mwedge{} (v = (f a z@0)))) \mvee{} ((\mforall{}a:A. (\mneg{}a \mmember{} X(e))) \mwedge{} (v = z@0))))
11. \mneg{}\muparrow{}first(e)
\mvdash{} if e \mmember{}\msubb{} X
then \mdownarrow{}\mexists{}w:B. \mexists{}a:A. (w \mmember{} Memory-class(f;init;X)(e) \mwedge{} (v = (f a w)) \mwedge{} a \mmember{} X(e))
else v \mmember{} Memory-class(f;init;X)(e)
fi
By
Latex:
(TrySquashExRepD (-2)
THEN Try (Complete ((OldAutoSplit THEN Auto)))
THEN OldAutoSplit
THEN SplitOrHyps
THEN ExRepD)
Home
Index