Nuprl Lemma : State-comb-trans1
∀[Info,B,A:Type]. ∀[R:B ⟶ B ⟶ ℙ].
∀f:A ⟶ B ⟶ B. ∀init:Id ⟶ bag(B). ∀X:EClass(A). ∀es:EO+(Info). ∀e1,e2:E. ∀v1,v2:B.
(Trans(B;x,y.R[x;y])
⇒ (∀a:A. ∀e:E.
((e1 <loc e)
⇒ e ≤loc e2
⇒ a ∈ X(e)
⇒ (∀s:B. (s ∈ State-comb(init;f;X)(pred(e))
⇒ R[s;f a s]))))
⇒ single-valued-classrel(es;X;A)
⇒ single-valued-bag(init loc(e1);B)
⇒ v1 ∈ State-comb(init;f;X)(e1)
⇒ v2 ∈ State-comb(init;f;X)(e2)
⇒ (e1 <loc e2)
⇒ (∃e:E. ((e1 <loc e) ∧ e ≤loc e2 ∧ (∃a:A. a ∈ X(e))))
⇒ R[v1;v2])
Proof
Definitions occuring in Statement :
State-comb: State-comb(init;f;X)
,
single-valued-classrel: single-valued-classrel(es;X;T)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-le: e ≤loc e'
,
es-locl: (e <loc e')
,
es-pred: pred(e)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
trans: Trans(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
single-valued-bag: single-valued-bag(b;T)
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
not: ¬A
,
subtype_rel: A ⊆r B
,
false: False
,
prop: ℙ
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
squash: ↓T
,
sq_stable: SqStable(P)
,
es-locl: (e <loc e')
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
Latex:
\mforall{}[Info,B,A:Type]. \mforall{}[R:B {}\mrightarrow{} B {}\mrightarrow{} \mBbbP{}].
\mforall{}f:A {}\mrightarrow{} B {}\mrightarrow{} B. \mforall{}init:Id {}\mrightarrow{} bag(B). \mforall{}X:EClass(A). \mforall{}es:EO+(Info). \mforall{}e1,e2:E. \mforall{}v1,v2:B.
(Trans(B;x,y.R[x;y])
{}\mRightarrow{} (\mforall{}a:A. \mforall{}e:E.
((e1 <loc e)
{}\mRightarrow{} e \mleq{}loc e2
{}\mRightarrow{} a \mmember{} X(e)
{}\mRightarrow{} (\mforall{}s:B. (s \mmember{} State-comb(init;f;X)(pred(e)) {}\mRightarrow{} R[s;f a s]))))
{}\mRightarrow{} single-valued-classrel(es;X;A)
{}\mRightarrow{} single-valued-bag(init loc(e1);B)
{}\mRightarrow{} v1 \mmember{} State-comb(init;f;X)(e1)
{}\mRightarrow{} v2 \mmember{} State-comb(init;f;X)(e2)
{}\mRightarrow{} (e1 <loc e2)
{}\mRightarrow{} (\mexists{}e:E. ((e1 <loc e) \mwedge{} e \mleq{}loc e2 \mwedge{} (\mexists{}a:A. a \mmember{} X(e))))
{}\mRightarrow{} R[v1;v2])
Date html generated:
2016_05_17-AM-09_59_56
Last ObjectModification:
2016_01_17-PM-11_05_49
Theory : classrel!lemmas
Home
Index