Nuprl Lemma : State-loc-comb-fun-eq
∀[Info,B,A:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[init:Id ⟶ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].
  (State-loc-comb(init;f;X)(e)
     = if e ∈b X
         then if first(e)
              then f loc(e) X(e) sv-bag-only(init loc(e))
              else f loc(e) X(e) State-loc-comb(init;f;X)(pred(e))
              fi 
       if first(e) then sv-bag-only(init loc(e))
       else State-loc-comb(init;f;X)(pred(e))
       fi 
     ∈ B) supposing 
     (single-valued-classrel(es;X;A) and 
     (∀l:Id. single-valued-bag(init l;B)) and 
     (∀l:Id. (1 ≤ #(init l))))
Proof
Definitions occuring in Statement : 
State-loc-comb: State-loc-comb(init;f;X), 
classfun: X(e), 
single-valued-classrel: single-valued-classrel(es;X;T), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-first: first(e), 
es-pred: pred(e), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
ifthenelse: if b then t else f fi , 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T, 
sv-bag-only: sv-bag-only(b), 
single-valued-bag: single-valued-bag(b;T), 
bag-size: #(bs), 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
classfun-res: X@e, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].
\mforall{}[e:E].
    (State-loc-comb(init;f;X)(e)
          =  if  e  \mmember{}\msubb{}  X
                  then  if  first(e)
                            then  f  loc(e)  X(e)  sv-bag-only(init  loc(e))
                            else  f  loc(e)  X(e)  State-loc-comb(init;f;X)(pred(e))
                            fi 
              if  first(e)  then  sv-bag-only(init  loc(e))
              else  State-loc-comb(init;f;X)(pred(e))
              fi  )  supposing 
          (single-valued-classrel(es;X;A)  and 
          (\mforall{}l:Id.  single-valued-bag(init  l;B))  and 
          (\mforall{}l:Id.  (1  \mleq{}  \#(init  l))))
Date html generated:
2016_05_17-AM-10_02_58
Last ObjectModification:
2016_01_17-PM-11_07_13
Theory : classrel!lemmas
Home
Index