Nuprl Lemma : State-loc-comb-invariant
∀[Info,A,S:Type]. ∀[init:Id ⟶ bag(S)]. ∀[f:Id ⟶ A ⟶ S ⟶ S]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[P:S ⟶ ℙ]. ∀[e:E].
∀v:S
((∀s:S. SqStable(P[s]))
⇒ (∀s:S. (s ↓∈ init loc(e)
⇒ P[s]))
⇒ (∀a:A. ∀e':E.
(e' ≤loc e
⇒ a ∈ X(e')
⇒ (∀s:S. (s ∈ Memory-loc-class(f;init;X)(e')
⇒ P[s]
⇒ P[f loc(e') a s]))))
⇒ v ∈ State-loc-comb(init;f;X)(e)
⇒ P[v])
Proof
Definitions occuring in Statement :
State-loc-comb: State-loc-comb(init;f;X)
,
Memory-loc-class: Memory-loc-class(f;init;X)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-le: e ≤loc e'
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
sq_stable: SqStable(P)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
bag-member: x ↓∈ bs
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
sq_stable: SqStable(P)
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
squash: ↓T
,
so_lambda: λ2x.t[x]
Latex:
\mforall{}[Info,A,S:Type]. \mforall{}[init:Id {}\mrightarrow{} bag(S)]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} S {}\mrightarrow{} S]. \mforall{}[X:EClass(A)]. \mforall{}[es:EO+(Info)].
\mforall{}[P:S {}\mrightarrow{} \mBbbP{}]. \mforall{}[e:E].
\mforall{}v:S
((\mforall{}s:S. SqStable(P[s]))
{}\mRightarrow{} (\mforall{}s:S. (s \mdownarrow{}\mmember{} init loc(e) {}\mRightarrow{} P[s]))
{}\mRightarrow{} (\mforall{}a:A. \mforall{}e':E.
(e' \mleq{}loc e
{}\mRightarrow{} a \mmember{} X(e')
{}\mRightarrow{} (\mforall{}s:S. (s \mmember{} Memory-loc-class(f;init;X)(e') {}\mRightarrow{} P[s] {}\mRightarrow{} P[f loc(e') a s]))))
{}\mRightarrow{} v \mmember{} State-loc-comb(init;f;X)(e)
{}\mRightarrow{} P[v])
Date html generated:
2016_05_17-AM-10_03_09
Last ObjectModification:
2016_01_17-PM-11_03_53
Theory : classrel!lemmas
Home
Index