Nuprl Lemma : disjoint-union-classrel-ite
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:A + B].
uiff(v ∈ X + Y(e);↓((↑isl(v)) ∧ outl(v) ∈ X(e)) ∨ ((¬↑isl(v)) ∧ outr(v) ∈ Y(e) ∧ (∀w:A. (¬w ∈ X(e)))))
Proof
Definitions occuring in Statement :
disjoint-union-class: X + Y
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
outr: outr(x)
,
outl: outl(x)
,
assert: ↑b
,
isl: isl(x)
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
not: ¬A
,
squash: ↓T
,
or: P ∨ Q
,
and: P ∧ Q
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
and: P ∧ Q
,
outl: outl(x)
,
isl: isl(x)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
false: False
,
outr: outr(x)
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uiff: uiff(P;Q)
,
squash: ↓T
,
classrel: v ∈ X(e)
,
bag-member: x ↓∈ bs
,
btrue: tt
,
or: P ∨ Q
,
cand: A c∧ B
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[X:EClass(A)]. \mforall{}[Y:EClass(B)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:A + B].
uiff(v \mmember{} X + Y(e);\mdownarrow{}((\muparrow{}isl(v)) \mwedge{} outl(v) \mmember{} X(e))
\mvee{} ((\mneg{}\muparrow{}isl(v)) \mwedge{} outr(v) \mmember{} Y(e) \mwedge{} (\mforall{}w:A. (\mneg{}w \mmember{} X(e)))))
Date html generated:
2016_05_17-AM-09_26_20
Last ObjectModification:
2016_01_17-PM-11_11_05
Theory : classrel!lemmas
Home
Index