Nuprl Lemma : parallel-class-es-sv
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A:Type]. ∀[X,Y:EClass(A)].
  (es-sv-class(es;X || Y)) supposing (es-sv-class(es;X) and es-sv-class(es;Y) and disjoint-classrel(es;A;X;A;Y))
Proof
Definitions occuring in Statement : 
parallel-class: X || Y, 
es-sv-class: es-sv-class(es;X), 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
parallel-class: X || Y, 
es-sv-class: es-sv-class(es;X), 
eclass-compose2: eclass-compose2(f;X;Y), 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
eclass: EClass(A[eo; e]), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
guard: {T}, 
prop: ℙ, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
and: P ∧ Q, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
classrel: v ∈ X(e), 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
le: A ≤ B
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[X,Y:EClass(A)].
    (es-sv-class(es;X  ||  Y))  supposing 
          (es-sv-class(es;X)  and 
          es-sv-class(es;Y)  and 
          disjoint-classrel(es;A;X;A;Y))
Date html generated:
2016_05_17-AM-09_31_03
Last ObjectModification:
2016_01_17-PM-11_09_10
Theory : classrel!lemmas
Home
Index