Step
*
of Lemma
parallel-class-es-sv
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A:Type]. ∀[X,Y:EClass(A)].
(es-sv-class(es;X || Y)) supposing (es-sv-class(es;X) and es-sv-class(es;Y) and disjoint-classrel(es;A;X;A;Y))
BY
{ ((UnivCD THENA MaAuto)
THEN RepUR ``es-sv-class parallel-class eclass-compose2`` 0
THEN Auto
THEN All (Unfold `es-sv-class`)
THEN (RWO "bag-size-append" 0 THENA Auto)
THEN RepeatFor 2 ((InstHyp [⌜e⌝] (-3)⋅ THENA Auto))
THEN (Assert ⌜(#(X es e) = 0 ∈ ℤ) ∨ (#(X es e) = 1 ∈ ℤ)⌝⋅ THENA Auto')
THEN (Assert ⌜(#(Y es e) = 0 ∈ ℤ) ∨ (#(Y es e) = 1 ∈ ℤ)⌝⋅ THENA Auto')
THEN D (-2)
THEN D (-1)
THEN Auto'
THEN Assert ⌜False⌝⋅
THEN Auto
THEN RepeatFor 2 ((FLemma `bag-size-one` [-2] THENA Auto))
THEN (Assert ⌜single-valued-bag(X es e;A)⌝⋅ THENA (BLemma `single-valued-bag-if-le1` THEN Auto))
THEN (Assert ⌜single-valued-bag(Y es e;A)⌝⋅ THENA (BLemma `single-valued-bag-if-le1` THEN Auto))
THEN (Assert ⌜only(X es e) ↓∈ {only(X es e)}⌝⋅ THENA (BagMemberD 0 THEN Auto))
THEN (Assert ⌜only(Y es e) ↓∈ {only(Y es e)}⌝⋅ THENA (BagMemberD 0 THEN Auto))
THEN RevHypSubst' (-6) (-2)
THEN RevHypSubst' (-5) (-1)⋅
THEN Try (Fold `classrel` (-1))
THEN Try (Fold `classrel` (-2))
THEN UseDisjointClassRel (-1) (-2)) }
Latex:
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[A:Type]. \mforall{}[X,Y:EClass(A)].
(es-sv-class(es;X || Y)) supposing
(es-sv-class(es;X) and
es-sv-class(es;Y) and
disjoint-classrel(es;A;X;A;Y))
By
Latex:
((UnivCD THENA MaAuto)
THEN RepUR ``es-sv-class parallel-class eclass-compose2`` 0
THEN Auto
THEN All (Unfold `es-sv-class`)
THEN (RWO "bag-size-append" 0 THENA Auto)
THEN RepeatFor 2 ((InstHyp [\mkleeneopen{}e\mkleeneclose{}] (-3)\mcdot{} THENA Auto))
THEN (Assert \mkleeneopen{}(\#(X es e) = 0) \mvee{} (\#(X es e) = 1)\mkleeneclose{}\mcdot{} THENA Auto')
THEN (Assert \mkleeneopen{}(\#(Y es e) = 0) \mvee{} (\#(Y es e) = 1)\mkleeneclose{}\mcdot{} THENA Auto')
THEN D (-2)
THEN D (-1)
THEN Auto'
THEN Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{}
THEN Auto
THEN RepeatFor 2 ((FLemma `bag-size-one` [-2] THENA Auto))
THEN (Assert \mkleeneopen{}single-valued-bag(X es e;A)\mkleeneclose{}\mcdot{} THENA (BLemma `single-valued-bag-if-le1` THEN Auto))
THEN (Assert \mkleeneopen{}single-valued-bag(Y es e;A)\mkleeneclose{}\mcdot{} THENA (BLemma `single-valued-bag-if-le1` THEN Auto))
THEN (Assert \mkleeneopen{}only(X es e) \mdownarrow{}\mmember{} \{only(X es e)\}\mkleeneclose{}\mcdot{} THENA (BagMemberD 0 THEN Auto))
THEN (Assert \mkleeneopen{}only(Y es e) \mdownarrow{}\mmember{} \{only(Y es e)\}\mkleeneclose{}\mcdot{} THENA (BagMemberD 0 THEN Auto))
THEN RevHypSubst' (-6) (-2)
THEN RevHypSubst' (-5) (-1)\mcdot{}
THEN Try (Fold `classrel` (-1))
THEN Try (Fold `classrel` (-2))
THEN UseDisjointClassRel (-1) (-2))
Home
Index