Step
*
1
of Lemma
primed-class-opt-single-val0
1. Info : Type
2. B : Type
3. es : EO+(Info)
4. X : EClass(B)
5. init : Id ⟶ bag(B)
6. e : E@i
7. v1 : B@i
8. v2 : B@i
9. single-valued-bag(init loc(e);B)@i
10. single-valued-classrel(es;X;B)@i
11. e' : E
12. es-p-local-pred(es;λe'.(↓∃w:B. w ∈ X(e'))) e e'
13. v1 ∈ X(e')
14. e1 : E
15. es-p-local-pred(es;λe'.(↓∃w:B. w ∈ X(e'))) e e1
16. v2 ∈ X(e1)
⊢ v1 = v2 ∈ B
BY
{ (All (RepUR ``es-p-local-pred``)
THEN SquashExRepD
THEN UseLoclTri ⌜es⌝⌜e'⌝⌜e1⌝⋅
THEN Assert ⌜False⌝⋅
THEN Auto
THEN ((InstHyp [⌜e1⌝] (-9)⋅ THENA Complete (Auto)) ORELSE (InstHyp [⌜e'⌝] (-3)⋅ THENA Try (Complete (Auto))))
THEN (D (-1) THEN D 0)
THEN MaAuto) }
Latex:
Latex:
1. Info : Type
2. B : Type
3. es : EO+(Info)
4. X : EClass(B)
5. init : Id {}\mrightarrow{} bag(B)
6. e : E@i
7. v1 : B@i
8. v2 : B@i
9. single-valued-bag(init loc(e);B)@i
10. single-valued-classrel(es;X;B)@i
11. e' : E
12. es-p-local-pred(es;\mlambda{}e'.(\mdownarrow{}\mexists{}w:B. w \mmember{} X(e'))) e e'
13. v1 \mmember{} X(e')
14. e1 : E
15. es-p-local-pred(es;\mlambda{}e'.(\mdownarrow{}\mexists{}w:B. w \mmember{} X(e'))) e e1
16. v2 \mmember{} X(e1)
\mvdash{} v1 = v2
By
Latex:
(All (RepUR ``es-p-local-pred``)
THEN SquashExRepD
THEN UseLoclTri \mkleeneopen{}es\mkleeneclose{}\mkleeneopen{}e'\mkleeneclose{}\mkleeneopen{}e1\mkleeneclose{}\mcdot{}
THEN Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{}
THEN Auto
THEN ((InstHyp [\mkleeneopen{}e1\mkleeneclose{}] (-9)\mcdot{} THENA Complete (Auto))
ORELSE (InstHyp [\mkleeneopen{}e'\mkleeneclose{}] (-3)\mcdot{} THENA Try (Complete (Auto)))
)
THEN (D (-1) THEN D 0)
THEN MaAuto)
Home
Index