Step
*
of Lemma
prior-classrel-p-local-pred
∀[T,Info:Type]. ∀[X:EClass(T)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:T].
uiff(v ∈ Prior(X)(e);↓∃e':E. ((es-p-local-pred(es;λe'.(↓∃w:T. w ∈ X(e'))) e e') ∧ v ∈ X(e')))
BY
{ (InstLemma `prior-classrel` [] THEN RepeatFor 10 ((ParallelLast' THEN Try ((Reduce 0 THEN Complete (Auto)))))) }
1
1. T : Type
2. Info : Type
3. X : EClass(T)
4. es : EO+(Info)
5. e : E
6. v : T
7. v ∈ Prior(X)(e)
8. e' : E
9. v ∈ X(e')
10. (last(λe'.0 <z #(X es e')) e) = (inl e') ∈ (E + Top)
⊢ es-p-local-pred(es;λe'.(↓∃w:T. w ∈ X(e'))) e e'
2
1. T : Type
2. Info : Type
3. X : EClass(T)
4. es : EO+(Info)
5. e : E
6. v : T
7. e' : E
8. v ∈ X(e')
9. es-p-local-pred(es;λe'.(↓∃w:T. w ∈ X(e'))) e e'
⊢ (last(λe'.0 <z #(X es e')) e) = (inl e') ∈ (E + Top)
Latex:
Latex:
\mforall{}[T,Info:Type]. \mforall{}[X:EClass(T)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:T].
uiff(v \mmember{} Prior(X)(e);\mdownarrow{}\mexists{}e':E. ((es-p-local-pred(es;\mlambda{}e'.(\mdownarrow{}\mexists{}w:T. w \mmember{} X(e'))) e e') \mwedge{} v \mmember{} X(e')))
By
Latex:
(InstLemma `prior-classrel` []
THEN RepeatFor 10 ((ParallelLast' THEN Try ((Reduce 0 THEN Complete (Auto)))))
)
Home
Index