Nuprl Lemma : simple-loc-comb-1-concat-single-val
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A,B:Type]. ∀[F:Id ⟶ A ⟶ bag(B)]. ∀[X:EClass(A)].
  (single-valued-classrel(es;F@(Loc, X);B)) supposing 
     ((∀i:Id. ∀a:A. ∀e:E.  (a ∈ X(e) ⇒ single-valued-bag(F i a;B))) and 
     single-valued-classrel(es;X;A))
Proof
Definitions occuring in Statement : 
concat-lifting-loc-1: f@, 
simple-loc-comb-1: F(Loc, X), 
single-valued-classrel: single-valued-classrel(es;X;T), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
Id: Id, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
single-valued-bag: single-valued-bag(b;T), 
bag: bag(T)
Definitions unfolded in proof : 
single-valued-classrel: single-valued-classrel(es;X;T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
single-valued-bag: single-valued-bag(b;T), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:Type].  \mforall{}[F:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].
    (single-valued-classrel(es;F@(Loc,  X);B))  supposing 
          ((\mforall{}i:Id.  \mforall{}a:A.  \mforall{}e:E.    (a  \mmember{}  X(e)  {}\mRightarrow{}  single-valued-bag(F  i  a;B)))  and 
          single-valued-classrel(es;X;A))
Date html generated:
2016_05_17-AM-09_29_23
Last ObjectModification:
2015_12_29-PM-04_01_41
Theory : classrel!lemmas
Home
Index