Step
*
1
2
1
2
of Lemma
simple-loc-comb2-classrel
.....wf.....
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. f : Id ⟶ A ⟶ B ⟶ C
6. X : EClass(A)
7. Y : EClass(B)
8. es : EO+(Info)
9. e : E
10. v : C
11. uiff(v ∈ λl,w. lifting2-loc(f;l;w 0;w 1)|Loc; λ2k.[X; Y][k]|(e);↓∃vs:k:ℕ2 ⟶ [A; B][k]
((∀k:ℕ2. vs[k] ∈ [X; Y][k](e))
∧ (v = (f loc(e) (vs 0) (vs 1)) ∈ C)))
⊢ v ∈ λl,w. lifting2-loc(f;l;w 0;w 1)|Loc; λz.[X; Y][z]|(e) ∈ ℙ
BY
{ Auto }
1
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. f : Id ⟶ A ⟶ B ⟶ C
6. X : EClass(A)
7. Y : EClass(B)
8. es : EO+(Info)
9. e : E
10. v : C
11. ↓∃vs:k:ℕ2 ⟶ [A; B][k]. ((∀k:ℕ2. vs[k] ∈ [X; Y][k](e)) ∧ (v = (f loc(e) (vs 0) (vs 1)) ∈ C))
supposing v ∈ λl,w. lifting2-loc(f;l;w 0;w 1)|Loc; λ2k.[X; Y][k]|(e)
12. v ∈ λl,w. lifting2-loc(f;l;w 0;w 1)|Loc; λ2k.[X; Y][k]|(e)
supposing ↓∃vs:k:ℕ2 ⟶ [A; B][k]. ((∀k:ℕ2. vs[k] ∈ [X; Y][k](e)) ∧ (v = (f loc(e) (vs 0) (vs 1)) ∈ C))
⊢ λl,w. lifting2-loc(f;l;w 0;w 1)|Loc; λz.[X; Y][z]| ∈ EClass(C)
Latex:
Latex:
.....wf.....
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. f : Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} C
6. X : EClass(A)
7. Y : EClass(B)
8. es : EO+(Info)
9. e : E
10. v : C
11. uiff(v \mmember{} \mlambda{}l,w. lifting2-loc(f;l;w 0;w 1)|Loc; \mlambda{}\msubtwo{}k.[X; Y][k]|(e);\mdownarrow{}\mexists{}vs:k:\mBbbN{}2 {}\mrightarrow{} [A; B][k]
((\mforall{}k:\mBbbN{}2. vs[k] \mmember{} [X; Y][k](e))
\mwedge{} (v = (f loc(e) (vs 0) (vs 1)))))
\mvdash{} v \mmember{} \mlambda{}l,w. lifting2-loc(f;l;w 0;w 1)|Loc; \mlambda{}z.[X; Y][z]|(e) \mmember{} \mBbbP{}
By
Latex:
Auto
Home
Index