Nuprl Lemma : E-interface-pair
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)]. E((X,Y)) = E(Y) ∈ Type supposing E(Y) ⊆r E(X)
Proof
Definitions occuring in Statement :
es-interface-pair: (X,Y)
,
es-E-interface: E(X)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
top: Top
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
not: ¬A
,
false: False
,
assert: ↑b
,
bnot: ¬bb
,
guard: {T}
,
sq_type: SQType(T)
,
or: P ∨ Q
,
exists: ∃x:A. B[x]
,
bfalse: ff
,
prop: ℙ
,
ifthenelse: if b then t else f fi
,
band: p ∧b q
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
btrue: tt
,
it: ⋅
,
unit: Unit
,
bool: 𝔹
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
es-E-interface: E(X)
,
uimplies: b supposing a
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
true: True
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X,Y:EClass(Top)]. E((X,Y)) = E(Y) supposing E(Y) \msubseteq{}r E(X)
Date html generated:
2016_05_17-AM-08_10_57
Last ObjectModification:
2015_12_28-PM-11_11_57
Theory : event-ordering
Home
Index