Nuprl Lemma : es-interface-sum-cases
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(ℤ)]. ∀[e:E].
(Σ≤e(X)
= if e ∈b X then if e ∈b prior(X) then Σ≤prior(X)(e)(X) else 0 fi + X(e)
if e ∈b prior(X) then Σ≤prior(X)(e)(X)
else 0
fi
∈ ℤ)
Proof
Definitions occuring in Statement :
es-interface-sum: Σ≤e(X)
,
es-prior-interface: prior(X)
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
ifthenelse: if b then t else f fi
,
uall: ∀[x:A]. B[x]
,
add: n + m
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
es-interface-sum: Σ≤e(X)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
es-E-interface: E(X)
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X:EClass(\mBbbZ{})]. \mforall{}[e:E].
(\mSigma{}\mleq{}e(X)
= if e \mmember{}\msubb{} X then if e \mmember{}\msubb{} prior(X) then \mSigma{}\mleq{}prior(X)(e)(X) else 0 fi + X(e)
if e \mmember{}\msubb{} prior(X) then \mSigma{}\mleq{}prior(X)(e)(X)
else 0
fi )
Date html generated:
2016_05_17-AM-07_12_11
Last ObjectModification:
2015_12_29-AM-00_06_15
Theory : event-ordering
Home
Index