Nuprl Lemma : es-interface-val-restrict
∀[Info,A:Type]. ∀[I:EClass(A)]. ∀[P:es:EO+(Info) ⟶ E ⟶ ℙ]. ∀[p:∀es:EO+(Info). ∀e:E. Dec(P[es;e])]. ∀[es:EO+(Info)].
∀[e:E].
(I|p)(e) = I(e) ∈ A supposing ↑e ∈b (I|p)
Proof
Definitions occuring in Statement :
es-interface-restrict: (I|p)
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
assert: ↑b
,
decidable: Dec(P)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
eclass-val: X(e)
,
es-interface-restrict: (I|p)
,
in-eclass: e ∈b X
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
prop: ℙ
,
implies: P
⇒ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
eclass: EClass(A[eo; e])
,
uimplies: b supposing a
,
and: P ∧ Q
,
cand: A c∧ B
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
nat: ℕ
,
uiff: uiff(P;Q)
,
eq_int: (i =z j)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
so_lambda: λ2x y.t[x; y]
Latex:
\mforall{}[Info,A:Type]. \mforall{}[I:EClass(A)]. \mforall{}[P:es:EO+(Info) {}\mrightarrow{} E {}\mrightarrow{} \mBbbP{}].
\mforall{}[p:\mforall{}es:EO+(Info). \mforall{}e:E. Dec(P[es;e])]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E].
(I|p)(e) = I(e) supposing \muparrow{}e \mmember{}\msubb{} (I|p)
Date html generated:
2016_05_16-PM-10_47_07
Last ObjectModification:
2016_01_17-PM-07_19_21
Theory : event-ordering
Home
Index