Nuprl Lemma : first-interface-implies-prior-interface
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].
∀[e:E]. ↑e ∈b prior(Y) supposing ↑e ∈b prior(X) supposing ∀e:E. ((↑e ∈b X)
⇒ (¬↑e ∈b prior(X))
⇒ (↑e ∈b Y))
Proof
Definitions occuring in Statement :
es-prior-interface: prior(X)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
strongwellfounded: SWellFounded(R[x; y])
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
or: P ∨ Q
,
less_than: a < b
,
squash: ↓T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
es-E-interface: E(X)
,
es-locl: (e <loc e')
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X,Y:EClass(Top)].
\mforall{}[e:E]. \muparrow{}e \mmember{}\msubb{} prior(Y) supposing \muparrow{}e \mmember{}\msubb{} prior(X)
supposing \mforall{}e:E. ((\muparrow{}e \mmember{}\msubb{} X) {}\mRightarrow{} (\mneg{}\muparrow{}e \mmember{}\msubb{} prior(X)) {}\mRightarrow{} (\muparrow{}e \mmember{}\msubb{} Y))
Date html generated:
2016_05_16-PM-11_55_45
Last ObjectModification:
2016_01_17-PM-07_00_39
Theory : event-ordering
Home
Index