Nuprl Lemma : eclass0-bag-program_wf
∀[Info,B,C:Type]. ∀[X:EClass(B)]. ∀[F:Id ⟶ bag(B) ⟶ bag(C)]. ∀[Xpr:LocalClass(X)].
  (eclass0-bag-program(F;Xpr) ∈ LocalClass(eclass0-bag(F;X))) supposing 
     ((∀i:Id. ((F i {}) = {} ∈ bag(C))) and 
     valueall-type(C))
Proof
Definitions occuring in Statement : 
eclass0-bag-program: eclass0-bag-program(f;pr), 
eclass0-bag: eclass0-bag(f;X), 
local-class: LocalClass(X), 
eclass: EClass(A[eo; e]), 
Id: Id, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
empty-bag: {}, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
eclass0-bag-program: eclass0-bag-program(f;pr), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
eclass0-bag: eclass0-bag(f;X), 
class-ap: X(e), 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
ext-eq: A ≡ B, 
hdf-compose0-bag: hdf-compose0-bag(f;X), 
top: Top, 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
hdf-ap: X(a), 
hdf-run: hdf-run(P), 
hdf-halt: hdf-halt(), 
hdf-halted: hdf-halted(P), 
ifthenelse: if b then t else f fi , 
isr: isr(x), 
bfalse: ff, 
pi2: snd(t), 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
btrue: tt, 
pi1: fst(t)
Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B)].  \mforall{}[F:Id  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C)].  \mforall{}[Xpr:LocalClass(X)].
    (eclass0-bag-program(F;Xpr)  \mmember{}  LocalClass(eclass0-bag(F;X)))  supposing 
          ((\mforall{}i:Id.  ((F  i  \{\})  =  \{\}))  and 
          valueall-type(C))
Date html generated:
2016_05_17-AM-09_05_08
Last ObjectModification:
2015_12_29-PM-03_36_55
Theory : local!classes
Home
Index