Nuprl Lemma : eclass0-bag-program_wf

[Info,B,C:Type]. ∀[X:EClass(B)]. ∀[F:Id ⟶ bag(B) ⟶ bag(C)]. ∀[Xpr:LocalClass(X)].
  (eclass0-bag-program(F;Xpr) ∈ LocalClass(eclass0-bag(F;X))) supposing 
     ((∀i:Id. ((F {}) {} ∈ bag(C))) and 
     valueall-type(C))


Proof




Definitions occuring in Statement :  eclass0-bag-program: eclass0-bag-program(f;pr) eclass0-bag: eclass0-bag(f;X) local-class: LocalClass(X) eclass: EClass(A[eo; e]) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T empty-bag: {} bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a local-class: LocalClass(X) sq_exists: x:{A| B[x]} eclass0-bag-program: eclass0-bag-program(f;pr) all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] eclass0-bag: eclass0-bag(f;X) class-ap: X(e) guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ext-eq: A ≡ B hdf-compose0-bag: hdf-compose0-bag(f;X) top: Top mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) hdf-ap: X(a) hdf-run: hdf-run(P) hdf-halt: hdf-halt() hdf-halted: hdf-halted(P) ifthenelse: if then else fi  isr: isr(x) bfalse: ff pi2: snd(t) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) btrue: tt pi1: fst(t)

Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B)].  \mforall{}[F:Id  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C)].  \mforall{}[Xpr:LocalClass(X)].
    (eclass0-bag-program(F;Xpr)  \mmember{}  LocalClass(eclass0-bag(F;X)))  supposing 
          ((\mforall{}i:Id.  ((F  i  \{\})  =  \{\}))  and 
          valueall-type(C))



Date html generated: 2016_05_17-AM-09_05_08
Last ObjectModification: 2015_12_29-PM-03_36_55

Theory : local!classes


Home Index