Nuprl Lemma : eclass0-program_wf
∀[Info,B,C:Type].
∀[X:EClass(B)]. ∀[F:Id ⟶ B ⟶ bag(C)]. ∀[Xpr:LocalClass(X)]. (eclass0-program(F;Xpr) ∈ LocalClass((F o X)))
supposing valueall-type(C)
Proof
Definitions occuring in Statement :
eclass0-program: eclass0-program(f;pr)
,
eclass0: (f o X)
,
local-class: LocalClass(X)
,
eclass: EClass(A[eo; e])
,
Id: Id
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
local-class: LocalClass(X)
,
sq_exists: ∃x:{A| B[x]}
,
eclass0-program: eclass0-program(f;pr)
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
so_apply: x[s]
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
eclass0: (f o X)
,
class-ap: X(e)
,
squash: ↓T
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
ext-eq: A ≡ B
,
hdf-compose0: hdf-compose0(f;X)
,
top: Top
,
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0)
,
hdf-ap: X(a)
,
hdf-run: hdf-run(P)
,
hdf-halt: hdf-halt()
,
hdf-halted: hdf-halted(P)
,
ifthenelse: if b then t else f fi
,
isr: isr(x)
,
bfalse: ff
,
pi2: snd(t)
,
callbyvalueall: callbyvalueall,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
btrue: tt
,
pi1: fst(t)
Latex:
\mforall{}[Info,B,C:Type].
\mforall{}[X:EClass(B)]. \mforall{}[F:Id {}\mrightarrow{} B {}\mrightarrow{} bag(C)]. \mforall{}[Xpr:LocalClass(X)].
(eclass0-program(F;Xpr) \mmember{} LocalClass((F o X)))
supposing valueall-type(C)
Date html generated:
2016_05_17-AM-09_04_34
Last ObjectModification:
2016_01_17-PM-09_15_41
Theory : local!classes
Home
Index