Nuprl Lemma : hdf-parallel-bind-eq-gen
∀[A,B1,B2,C:Type]. ∀[X1:hdataflow(A;B1)]. ∀[X2:hdataflow(A;B2)]. ∀[Y1:B1 ⟶ hdataflow(A;C)]. ∀[Y2:B2 ⟶ hdataflow(A;C)].
  (X1 >>= Y1 || X2 >>= Y2 = X1 + X2 >>= λb.case b of inl(b1) => Y1 b1 | inr(b2) => Y2 b2 ∈ hdataflow(A;C)) supposing 
     (valueall-type(C) and 
     valueall-type(B2) and 
     valueall-type(B1))
Proof
Definitions occuring in Statement : 
hdf-bind: X >>= Y, 
hdf-union: X + Y, 
hdf-parallel: X || Y, 
hdataflow: hdataflow(A;B), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
eclass-disju-program: xpr + ypr, 
bind-class-program: xpr >>= ypr, 
parallel-class-program: X || Y, 
eclass1-program: eclass1-program(f;pr), 
mkid: "$x", 
Id: Id, 
squash: ↓T, 
prop: ℙ, 
implies: P ⇒ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[A,B1,B2,C:Type].  \mforall{}[X1:hdataflow(A;B1)].  \mforall{}[X2:hdataflow(A;B2)].  \mforall{}[Y1:B1  {}\mrightarrow{}  hdataflow(A;C)].
\mforall{}[Y2:B2  {}\mrightarrow{}  hdataflow(A;C)].
    (X1  >>=  Y1  ||  X2  >>=  Y2  =  X1  +  X2  >>=  \mlambda{}b.case  b  of  inl(b1)  =>  Y1  b1  |  inr(b2)  =>  Y2  b2)  supposing 
          (valueall-type(C)  and 
          valueall-type(B2)  and 
          valueall-type(B1))
Date html generated:
2016_05_17-AM-09_12_25
Last ObjectModification:
2016_01_17-PM-09_12_23
Theory : local!classes
Home
Index