Step
*
of Lemma
hdf-parallel-bind-eq-gen
∀[A,B1,B2,C:Type]. ∀[X1:hdataflow(A;B1)]. ∀[X2:hdataflow(A;B2)]. ∀[Y1:B1 ⟶ hdataflow(A;C)]. ∀[Y2:B2 ⟶ hdataflow(A;C)].
(X1 >>= Y1 || X2 >>= Y2 = X1 + X2 >>= λb.case b of inl(b1) => Y1 b1 | inr(b2) => Y2 b2 ∈ hdataflow(A;C)) supposing
(valueall-type(C) and
valueall-type(B2) and
valueall-type(B1))
BY
{ (InstLemma `parallel-bind-program-eq-gen` []
THEN RepeatFor 4 (ParallelLast')
THEN Auto
THEN (InstHyp [⌜λi.X1⌝;⌜λi.X2⌝;⌜λb,i. (Y1 b)⌝;⌜λb,i. (Y2 b)⌝] 5⋅ THENA Auto)
THEN RepUR ``bind-class-program parallel-class-program eclass-disju-program eclass1-program`` (-1)
THEN (ApFunToHypEquands `F' ⌜F "any"⌝ ⌜hdataflow(A;C)⌝ (-1)⋅ THENA Auto)
THEN Reduce (-1)
THEN (Assert ⌜Y1 = (λx.(Y1 x)) ∈ (B1 ⟶ hdataflow(A;C))⌝⋅ THENA (Ext THEN Reduce 0 THEN Auto))
THEN (Assert ⌜Y2 = (λx.(Y2 x)) ∈ (B2 ⟶ hdataflow(A;C))⌝⋅ THENA (Ext THEN Reduce 0 THEN Auto))
THEN (HypSubst (-1) 0 THENA Auto)
THEN (HypSubst (-2) 0 THENA Auto)
THEN (HypSubst (-3) 0 THENA Auto)
THEN Repeat ((EqCD THEN Auto))
THEN Try (DProdsAndUnions)
THEN AllReduce
THEN Auto
THEN RWO "hdf-union-eq-disju<" 0
THEN Auto) }
Latex:
Latex:
\mforall{}[A,B1,B2,C:Type]. \mforall{}[X1:hdataflow(A;B1)]. \mforall{}[X2:hdataflow(A;B2)]. \mforall{}[Y1:B1 {}\mrightarrow{} hdataflow(A;C)].
\mforall{}[Y2:B2 {}\mrightarrow{} hdataflow(A;C)].
(X1 >>= Y1 || X2 >>= Y2 = X1 + X2 >>= \mlambda{}b.case b of inl(b1) => Y1 b1 | inr(b2) => Y2 b2) supposing
(valueall-type(C) and
valueall-type(B2) and
valueall-type(B1))
By
Latex:
(InstLemma `parallel-bind-program-eq-gen` []
THEN RepeatFor 4 (ParallelLast')
THEN Auto
THEN (InstHyp [\mkleeneopen{}\mlambda{}i.X1\mkleeneclose{};\mkleeneopen{}\mlambda{}i.X2\mkleeneclose{};\mkleeneopen{}\mlambda{}b,i. (Y1 b)\mkleeneclose{};\mkleeneopen{}\mlambda{}b,i. (Y2 b)\mkleeneclose{}] 5\mcdot{} THENA Auto)
THEN RepUR ``bind-class-program parallel-class-program eclass-disju-program eclass1-program`` (-1)
THEN (ApFunToHypEquands `F' \mkleeneopen{}F "any"\mkleeneclose{} \mkleeneopen{}hdataflow(A;C)\mkleeneclose{} (-1)\mcdot{} THENA Auto)
THEN Reduce (-1)
THEN (Assert \mkleeneopen{}Y1 = (\mlambda{}x.(Y1 x))\mkleeneclose{}\mcdot{} THENA (Ext THEN Reduce 0 THEN Auto))
THEN (Assert \mkleeneopen{}Y2 = (\mlambda{}x.(Y2 x))\mkleeneclose{}\mcdot{} THENA (Ext THEN Reduce 0 THEN Auto))
THEN (HypSubst (-1) 0 THENA Auto)
THEN (HypSubst (-2) 0 THENA Auto)
THEN (HypSubst (-3) 0 THENA Auto)
THEN Repeat ((EqCD THEN Auto))
THEN Try (DProdsAndUnions)
THEN AllReduce
THEN Auto
THEN RWO "hdf-union-eq-disju<" 0
THEN Auto)
Home
Index