Step
*
1
of Lemma
once-class-program_wf
1. Info : Type
2. B : Type
3. X : EClass(B)
4. F : Id ⟶ hdataflow(Info;B)
5. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(F loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B))
6. es : EO+(Info)@i'
7. e : E@i
⊢ (X once)(e) = (snd((λi.hdf-once(F i)) loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B)
BY
{ (Reduce 0
THEN Assert ⌜hdf-once(F loc(e))*(map(λx.info(x);before(e)))
= hdf-once(if isl(class-pred(X;es;e)) then hdf-halt() else F loc(e)*(map(λx.info(x);before(e))) fi )
∈ hdataflow(Info;B)⌝⋅
) }
1
.....assertion.....
1. Info : Type
2. B : Type
3. X : EClass(B)
4. F : Id ⟶ hdataflow(Info;B)
5. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(F loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B))
6. es : EO+(Info)@i'
7. e : E@i
⊢ hdf-once(F loc(e))*(map(λx.info(x);before(e)))
= hdf-once(if isl(class-pred(X;es;e)) then hdf-halt() else F loc(e)*(map(λx.info(x);before(e))) fi )
∈ hdataflow(Info;B)
2
1. Info : Type
2. B : Type
3. X : EClass(B)
4. F : Id ⟶ hdataflow(Info;B)
5. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(F loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B))
6. es : EO+(Info)@i'
7. e : E@i
8. hdf-once(F loc(e))*(map(λx.info(x);before(e)))
= hdf-once(if isl(class-pred(X;es;e)) then hdf-halt() else F loc(e)*(map(λx.info(x);before(e))) fi )
∈ hdataflow(Info;B)
⊢ (X once)(e) = (snd(hdf-once(F loc(e))*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B)
Latex:
Latex:
1. Info : Type
2. B : Type
3. X : EClass(B)
4. F : Id {}\mrightarrow{} hdataflow(Info;B)
5. \mforall{}es:EO+(Info). \mforall{}e:E. (X(e) = (snd(F loc(e)*(map(\mlambda{}x.info(x);before(e)))(info(e)))))
6. es : EO+(Info)@i'
7. e : E@i
\mvdash{} (X once)(e) = (snd((\mlambda{}i.hdf-once(F i)) loc(e)*(map(\mlambda{}x.info(x);before(e)))(info(e))))
By
Latex:
(Reduce 0
THEN Assert \mkleeneopen{}hdf-once(F loc(e))*(map(\mlambda{}x.info(x);before(e)))
= hdf-once(if isl(class-pred(X;es;e))
then hdf-halt()
else F loc(e)*(map(\mlambda{}x.info(x);before(e)))
fi )\mkleeneclose{}\mcdot{}
)
Home
Index