Step
*
1
of Lemma
until-class-program_wf
1. Info : Type
2. B : Type
3. C : Type
4. X : EClass(B)
5. Y : EClass(C)
6. xpr : Id ⟶ hdataflow(Info;B)
7. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(xpr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B))
8. ypr : Id ⟶ hdataflow(Info;C)
9. ∀es:EO+(Info). ∀e:E. (Y(e) = (snd(ypr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(C))
10. es : EO+(Info)@i'
11. e : E@i
⊢ (X until Y)(e) = (snd((λi.hdf-until(xpr i;ypr i)) loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B)
BY
{ (Reduce 0
THEN Assert ⌜hdf-until(xpr loc(e);ypr loc(e))*(map(λx.info(x);before(e)))
= hdf-until(if isl(class-pred(Y;es;e))
then hdf-halt()
else xpr loc(e)*(map(λx.info(x);before(e)))
fi ;ypr loc(e)*(map(λx.info(x);before(e))))
∈ hdataflow(Info;B)⌝⋅
)⋅ }
1
.....assertion.....
1. Info : Type
2. B : Type
3. C : Type
4. X : EClass(B)
5. Y : EClass(C)
6. xpr : Id ⟶ hdataflow(Info;B)
7. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(xpr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B))
8. ypr : Id ⟶ hdataflow(Info;C)
9. ∀es:EO+(Info). ∀e:E. (Y(e) = (snd(ypr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(C))
10. es : EO+(Info)@i'
11. e : E@i
⊢ hdf-until(xpr loc(e);ypr loc(e))*(map(λx.info(x);before(e)))
= hdf-until(if isl(class-pred(Y;es;e))
then hdf-halt()
else xpr loc(e)*(map(λx.info(x);before(e)))
fi ;ypr loc(e)*(map(λx.info(x);before(e))))
∈ hdataflow(Info;B)
2
1. Info : Type
2. B : Type
3. C : Type
4. X : EClass(B)
5. Y : EClass(C)
6. xpr : Id ⟶ hdataflow(Info;B)
7. ∀es:EO+(Info). ∀e:E. (X(e) = (snd(xpr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B))
8. ypr : Id ⟶ hdataflow(Info;C)
9. ∀es:EO+(Info). ∀e:E. (Y(e) = (snd(ypr loc(e)*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(C))
10. es : EO+(Info)@i'
11. e : E@i
12. hdf-until(xpr loc(e);ypr loc(e))*(map(λx.info(x);before(e)))
= hdf-until(if isl(class-pred(Y;es;e))
then hdf-halt()
else xpr loc(e)*(map(λx.info(x);before(e)))
fi ;ypr loc(e)*(map(λx.info(x);before(e))))
∈ hdataflow(Info;B)
⊢ (X until Y)(e) = (snd(hdf-until(xpr loc(e);ypr loc(e))*(map(λx.info(x);before(e)))(info(e)))) ∈ bag(B)
Latex:
Latex:
1. Info : Type
2. B : Type
3. C : Type
4. X : EClass(B)
5. Y : EClass(C)
6. xpr : Id {}\mrightarrow{} hdataflow(Info;B)
7. \mforall{}es:EO+(Info). \mforall{}e:E. (X(e) = (snd(xpr loc(e)*(map(\mlambda{}x.info(x);before(e)))(info(e)))))
8. ypr : Id {}\mrightarrow{} hdataflow(Info;C)
9. \mforall{}es:EO+(Info). \mforall{}e:E. (Y(e) = (snd(ypr loc(e)*(map(\mlambda{}x.info(x);before(e)))(info(e)))))
10. es : EO+(Info)@i'
11. e : E@i
\mvdash{} (X until Y)(e) = (snd((\mlambda{}i.hdf-until(xpr i;ypr i)) loc(e)*(map(\mlambda{}x.info(x);before(e)))(info(e))))
By
Latex:
(Reduce 0
THEN Assert \mkleeneopen{}hdf-until(xpr loc(e);ypr loc(e))*(map(\mlambda{}x.info(x);before(e)))
= hdf-until(if isl(class-pred(Y;es;e))
then hdf-halt()
else xpr loc(e)*(map(\mlambda{}x.info(x);before(e)))
fi ;ypr loc(e)*(map(\mlambda{}x.info(x);before(e))))\mkleeneclose{}\mcdot{}
)\mcdot{}
Home
Index