Nuprl Lemma : alle-at-iff
∀es:EO. ∀i:Id.
∀[P:{e:E| loc(e) = i ∈ Id} ⟶ ℙ]
(∀e@i.P[e]
⇐⇒ ∀e@i.P[e] supposing ↑first(e) ∧ ∀e@i.P[pred(e)]
⇒ P[e] supposing ¬↑first(e))
Proof
Definitions occuring in Statement :
alle-at: ∀e@i.P[e]
,
es-first: first(e)
,
es-pred: pred(e)
,
es-loc: loc(e)
,
es-E: E
,
event_ordering: EO
,
Id: Id
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
uimplies: b supposing a
,
es-E: E
,
es-base-E: es-base-E(es)
,
guard: {T}
,
subtype_rel: A ⊆r B
,
alle-at: ∀e@i.P[e]
,
not: ¬A
,
false: False
,
wellfounded: WellFnd{i}(A;x,y.R[x; y])
,
decidable: Dec(P)
,
or: P ∨ Q
Latex:
\mforall{}es:EO. \mforall{}i:Id.
\mforall{}[P:\{e:E| loc(e) = i\} {}\mrightarrow{} \mBbbP{}]
(\mforall{}e@i.P[e] \mLeftarrow{}{}\mRightarrow{} \mforall{}e@i.P[e] supposing \muparrow{}first(e) \mwedge{} \mforall{}e@i.P[pred(e)] {}\mRightarrow{} P[e] supposing \mneg{}\muparrow{}first(e))
Date html generated:
2016_05_16-AM-09_40_22
Last ObjectModification:
2015_12_28-PM-09_43_50
Theory : new!event-ordering
Home
Index