Nuprl Lemma : alle-at-iff

es:EO. ∀i:Id.
  ∀[P:{e:E| loc(e) i ∈ Id}  ⟶ ℙ]
    (∀e@i.P[e] ⇐⇒ ∀e@i.P[e] supposing ↑first(e) ∧ ∀e@i.P[pred(e)]  P[e] supposing ¬↑first(e))


Proof




Definitions occuring in Statement :  alle-at: e@i.P[e] es-first: first(e) es-pred: pred(e) es-loc: loc(e) es-E: E event_ordering: EO Id: Id assert: b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q uimplies: supposing a es-E: E es-base-E: es-base-E(es) guard: {T} subtype_rel: A ⊆B alle-at: e@i.P[e] not: ¬A false: False wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) or: P ∨ Q

Latex:
\mforall{}es:EO.  \mforall{}i:Id.
    \mforall{}[P:\{e:E|  loc(e)  =  i\}    {}\mrightarrow{}  \mBbbP{}]
        (\mforall{}e@i.P[e]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}e@i.P[e]  supposing  \muparrow{}first(e)  \mwedge{}  \mforall{}e@i.P[pred(e)]  {}\mRightarrow{}  P[e]  supposing  \mneg{}\muparrow{}first(e))



Date html generated: 2016_05_16-AM-09_40_22
Last ObjectModification: 2015_12_28-PM-09_43_50

Theory : new!event-ordering


Home Index