Nuprl Lemma : es-fset-last_wf

[es:EO]. ∀[s:fset(E)]. ∀[i:Id].
  s(i) ∈ {e:E| (loc(e) i ∈ Id) ∧ e ∈ s ∧ (∀e':E. (e' ∈  (e <loc e'))))}  supposing i ∈ locs(s)


Proof




Definitions occuring in Statement :  es-fset-last: s(i) es-fset-loc: i ∈ locs(s) es-locl: (e <loc e') es-eq: es-eq(es) es-loc: loc(e) es-E: E event_ordering: EO fset-member: a ∈ s fset: fset(T) Id: Id uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a es-fset-last: s(i) not: ¬A implies:  Q subtype_rel: A ⊆B top: Top es-fset-loc: i ∈ locs(s) false: False prop: and: P ∧ Q cand: c∧ B all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] es-locl: (e <loc e') or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt subtract: m true: True cons: [a b] bfalse: ff int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] l_member: (x ∈ l) nat: sq_type: SQType(T) guard: {T} last: last(L) sorted-by: sorted-by(R;L) less_than: a < b squash: T

Latex:
\mforall{}[es:EO].  \mforall{}[s:fset(E)].  \mforall{}[i:Id].
    s(i)  \mmember{}  \{e:E|  (loc(e)  =  i)  \mwedge{}  e  \mmember{}  s  \mwedge{}  (\mforall{}e':E.  (e'  \mmember{}  s  {}\mRightarrow{}  (\mneg{}(e  <loc  e'))))\}    supposing  i  \mmember{}  locs(s)



Date html generated: 2016_05_16-AM-10_14_47
Last ObjectModification: 2016_01_17-PM-01_21_33

Theory : new!event-ordering


Home Index