Step
*
of Lemma
es-fset-last_wf
∀[es:EO]. ∀[s:fset(E)]. ∀[i:Id].
s(i) ∈ {e:E| (loc(e) = i ∈ Id) ∧ e ∈ s ∧ (∀e':E. (e' ∈ s
⇒ (¬(e <loc e'))))} supposing i ∈ locs(s)
BY
{ (Auto
THEN MemTypeCD
THEN Auto
THEN ((Unfold `es-fset-last` 0 THEN Auto THEN Try (Complete ((UnfoldTopAb (-1) THEN Auto))))
THEN InstLemma `es-fset-at-property` [⌜es⌝;⌜i⌝;⌜s⌝]⋅
THEN Auto)⋅) }
1
1. es : EO
2. s : fset(E)
3. i : Id
4. i ∈ locs(s)
5. loc(s(i)) = i ∈ Id
6. s(i) ∈ s
7. e' : E@i
8. e' ∈ s@i
9. ∀e:E. (e ∈ s ∧ (loc(e) = i ∈ Id)
⇐⇒ (e ∈ s@i))
10. no_repeats(E;s@i)
11. sorted-by(λe,e'. e ≤loc e' ;s@i)
⊢ ¬(last(s@i) <loc e')
Latex:
Latex:
\mforall{}[es:EO]. \mforall{}[s:fset(E)]. \mforall{}[i:Id].
s(i) \mmember{} \{e:E| (loc(e) = i) \mwedge{} e \mmember{} s \mwedge{} (\mforall{}e':E. (e' \mmember{} s {}\mRightarrow{} (\mneg{}(e <loc e'))))\} supposing i \mmember{} locs(s)
By
Latex:
(Auto
THEN MemTypeCD
THEN Auto
THEN ((Unfold `es-fset-last` 0 THEN Auto THEN Try (Complete ((UnfoldTopAb (-1) THEN Auto))))
THEN InstLemma `es-fset-at-property` [\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}i\mkleeneclose{};\mkleeneopen{}s\mkleeneclose{}]\mcdot{}
THEN Auto)\mcdot{})
Home
Index