Nuprl Lemma : st-lookup-outl

[T:Id ⟶ Type]
  ∀tab:secret-table(T). ∀x:Atom1.
    ∃n:ℕ||tab|| 
     ((n ≤ ptr(tab))
     ∧ (st-atom(tab;n) x ∈ Atom1)
     ∧ (outl(st-lookup(tab;x)) = <key(tab;n), data(tab;n)> ∈ (ℕ Atom1 × data(T)))) 
    supposing ↑isl(st-lookup(tab;x))


Proof




Definitions occuring in Statement :  st-lookup: st-lookup(tab;x) st-data: data(tab;n) st-key: key(tab;n) st-atom: st-atom(tab;n) st-ptr: ptr(tab) st-length: ||tab||  secret-table: secret-table(T) data: data(T) Id: Id int_seg: {i..j-} nat: atom: Atom$n outl: outl(x) assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q secret-table: secret-table(T) st-lookup: st-lookup(tab;x) st-atom: st-atom(tab;n) st-ptr: ptr(tab) st-length: ||tab||  spreadn: spread3 pi1: fst(t) pi2: snd(t) prop: nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q bor: p ∨bq ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top le: A ≤ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q true: True isl: isl(x) outl: outl(x) st-data: data(tab;n) st-key: key(tab;n) let: let exposed-bfalse: exposed-bfalse squash: T cand: c∧ B

Latex:
\mforall{}[T:Id  {}\mrightarrow{}  Type]
    \mforall{}tab:secret-table(T).  \mforall{}x:Atom1.
        \mexists{}n:\mBbbN{}||tab|| 
          ((n  \mleq{}  ptr(tab))  \mwedge{}  (st-atom(tab;n)  =  x)  \mwedge{}  (outl(st-lookup(tab;x))  =  <key(tab;n),  data(tab;n)>)) 
        supposing  \muparrow{}isl(st-lookup(tab;x))



Date html generated: 2016_05_16-AM-10_02_53
Last ObjectModification: 2016_01_17-PM-01_23_43

Theory : new!event-ordering


Home Index