Nuprl Lemma : st-lookup_wf
∀[T:Id ⟶ Type]. ∀[tab:secret-table(T)]. ∀[x:Atom1].  (st-lookup(tab;x) ∈ ℕ + Atom1 × data(T)?)
Proof
Definitions occuring in Statement : 
st-lookup: st-lookup(tab;x)
, 
secret-table: secret-table(T)
, 
data: data(T)
, 
Id: Id
, 
nat: ℕ
, 
atom: Atom$n
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
secret-table: secret-table(T)
, 
st-lookup: st-lookup(tab;x)
, 
spreadn: spread3, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bor: p ∨bq
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
le: A ≤ B
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
true: True
Latex:
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].  \mforall{}[x:Atom1].    (st-lookup(tab;x)  \mmember{}  \mBbbN{}  +  Atom1  \mtimes{}  data(T)?)
Date html generated:
2016_05_16-AM-10_01_57
Last ObjectModification:
2016_01_17-PM-01_22_18
Theory : new!event-ordering
Home
Index