Nuprl Lemma : pv11_p1_inc_acc_pvals_fun
∀Cmd:ValueAllType. ∀f:pv11_p1_headers_type{i:l}(Cmd). ∀es:EO+(Message(f)). ∀e1,e2:E. ∀ldrs_uid:Id ⟶ ℤ.
∀bsp:pv11_p1_Ballot_Num() × ℤ × Cmd.
(e1 ≤loc e2
⇒ (bsp ∈ snd(pv11_p1_AcceptorStateFun(Cmd;ldrs_uid;f;es;e1)))
⇒ (bsp ∈ snd(pv11_p1_AcceptorStateFun(Cmd;ldrs_uid;f;es;e2))))
Proof
Definitions occuring in Statement :
pv11_p1_AcceptorStateFun: pv11_p1_AcceptorStateFun(Cmd;ldrs_uid;mf;es;e)
,
pv11_p1_headers_type: pv11_p1_headers_type{i:l}(Cmd)
,
pv11_p1_Ballot_Num: pv11_p1_Ballot_Num()
,
Message: Message(f)
,
event-ordering+: EO+(Info)
,
es-le: e ≤loc e'
,
es-E: E
,
Id: Id
,
l_member: (x ∈ l)
,
vatype: ValueAllType
,
pi2: snd(t)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
int: ℤ
Definitions unfolded in proof :
vatype: ValueAllType
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
pv11_p1_headers_type: pv11_p1_headers_type{i:l}(Cmd)
,
l_all: (∀x∈L.P[x])
,
and: P ∧ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
listp: A List+
,
name: Name
,
pv11_p1_headers: pv11_p1_headers()
,
rev_implies: P
⇐ Q
,
guard: {T}
,
or: P ∨ Q
,
uimplies: b supposing a
,
pv11_p1_headers_fun: pv11_p1_headers_fun(Cmd)
,
name_eq: name_eq(x;y)
,
name-deq: NameDeq
,
list-deq: list-deq(eq)
,
list_ind: list_ind,
cons: [a / b]
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
atom-deq: AtomDeq
,
eq_atom: x =a y
,
bfalse: ff
,
btrue: tt
,
nil: []
,
it: ⋅
,
null: null(as)
,
es-le: e ≤loc e'
,
top: Top
Latex:
\mforall{}Cmd:ValueAllType. \mforall{}f:pv11\_p1\_headers\_type\{i:l\}(Cmd). \mforall{}es:EO+(Message(f)). \mforall{}e1,e2:E.
\mforall{}ldrs$_{uid}$:Id {}\mrightarrow{} \mBbbZ{}. \mforall{}bsp:pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd.
(e1 \mleq{}loc e2
{}\mRightarrow{} (bsp \mmember{} snd(pv11\_p1\_AcceptorStateFun(Cmd;ldrs$_{uid}$;f;es;e1)))
{}\mRightarrow{} (bsp \mmember{} snd(pv11\_p1\_AcceptorStateFun(Cmd;ldrs$_{uid}$;f;es;e2))))
Date html generated:
2016_05_17-PM-03_45_44
Last ObjectModification:
2015_12_29-PM-11_16_26
Theory : paxos!synod
Home
Index