Nuprl Lemma : bag-member-sv-list
∀T:Type. ∀L:T List.  ∀x:T. (x ↓∈ L ⇐⇒ (x ∈ L)) supposing single-valued-list(L;T)
Proof
Definitions occuring in Statement : 
single-valued-list: single-valued-list(L;T), 
l_member: (x ∈ l), 
list: T List, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type, 
bag-member: x ↓∈ bs
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
single-valued-list: single-valued-list(L;T), 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
bag-member: x ↓∈ bs, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
cand: A c∧ B, 
bag: bag(T), 
quotient: x,y:A//B[x; y], 
guard: {T}, 
or: P ∨ Q, 
cons: [a / b], 
top: Top, 
decidable: Dec(P), 
uiff: uiff(P;Q), 
subtract: n - m, 
true: True, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Latex:
\mforall{}T:Type.  \mforall{}L:T  List.    \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  L  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))  supposing  single-valued-list(L;T)
Date html generated:
2016_05_17-AM-11_11_10
Last ObjectModification:
2016_01_18-AM-00_10_06
Theory : process-model
Home
Index