Nuprl Lemma : run-prior-state_wf
∀[M:Type ⟶ Type]. ∀[S0:System(P.M[P])]. ∀[r:fulpRunType(P.M[P])]. ∀[e:ℕ × Id].
  (run-prior-state(S0;r;e) ∈ Process(P.M[P]) List)
Proof
Definitions occuring in Statement : 
run-prior-state: run-prior-state(S0;r;e), 
fulpRunType: fulpRunType(T.M[T]), 
System: System(P.M[P]), 
Process: Process(P.M[P]), 
Id: Id, 
list: T List, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
run-prior-state: run-prior-state(S0;r;e), 
run-event-local-pred: run-event-local-pred(r;e), 
run-event-history: run-event-history(r;e), 
run-event-loc: run-event-loc(e), 
run-event-state: run-event-state(r;e), 
run-event-step: run-event-step(e), 
let: let, 
pi2: snd(t), 
pi1: fst(t), 
and: P ∧ Q, 
prop: ℙ, 
nat: ℕ, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
implies: P ⇒ Q, 
cand: A c∧ B, 
component: component(P.M[P]), 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
System: System(P.M[P]), 
bfalse: ff, 
top: Top, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
fulpRunType: fulpRunType(T.M[T]), 
spreadn: spread3
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[S0:System(P.M[P])].  \mforall{}[r:fulpRunType(P.M[P])].  \mforall{}[e:\mBbbN{}  \mtimes{}  Id].
    (run-prior-state(S0;r;e)  \mmember{}  Process(P.M[P])  List)
Date html generated:
2016_05_17-AM-10_44_19
Last ObjectModification:
2015_12_29-PM-05_23_09
Theory : process-model
Home
Index