Nuprl Lemma : hdataflow-ext
∀[A,B:Type].  hdataflow(A;B) ≡ A ─→ (hdataflow(A;B) × bag(B))?
Proof
Definitions occuring in Statement : 
hdataflow: hdataflow(A;B), 
ext-eq: A ≡ B, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
function: x:A ─→ B[x], 
product: x:A × B[x], 
union: left + right, 
universe: Type, 
bag: bag(T)
Lemmas : 
corec-ext, 
bag_wf, 
unit_wf2, 
continuous-monotone-union, 
continuous-monotone-function, 
continuous-monotone-product, 
continuous-monotone-id, 
continuous-monotone-constant
\mforall{}[A,B:Type].    hdataflow(A;B)  \mequiv{}  A  {}\mrightarrow{}  (hdataflow(A;B)  \mtimes{}  bag(B))?
Date html generated:
2015_07_17-AM-08_04_37
Last ObjectModification:
2015_01_27-PM-00_16_46
Home
Index