Nuprl Lemma : continuous-monotone-constant
∀[G:Type]. ContinuousMonotone(T.G)
Proof
Definitions occuring in Statement : 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
and: P ∧ Q
, 
type-monotone: Monotone(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
guard: {T}
Lemmas referenced : 
subtype_rel_wf, 
continuous-constant, 
subtype_rel_weakening, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isectEquality, 
independent_isectElimination, 
functionEquality, 
cumulativity, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}[G:Type].  ContinuousMonotone(T.G)
Date html generated:
2016_05_13-PM-04_10_14
Last ObjectModification:
2015_12_26-AM-11_22_18
Theory : subtype_1
Home
Index