Nuprl Lemma : continuous-monotone-constant

[G:Type]. ContinuousMonotone(T.G)


Proof




Definitions occuring in Statement :  continuous-monotone: ContinuousMonotone(T.F[T]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) guard: {T}
Lemmas referenced :  subtype_rel_wf continuous-constant subtype_rel_weakening nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaEquality hypothesisEquality sqequalRule axiomEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality isectEquality independent_isectElimination functionEquality cumulativity productElimination independent_pairEquality

Latex:
\mforall{}[G:Type].  ContinuousMonotone(T.G)



Date html generated: 2016_05_13-PM-04_10_14
Last ObjectModification: 2015_12_26-AM-11_22_18

Theory : subtype_1


Home Index