Step * 1 1 1 of Lemma cosetTC-transitive


1. coSet{i:l}
2. {p:copath(T.T;a)| 0 < copath-length(p)} 
3. t1 set-dom(copath-at(a;t))
⊢ ∃p:{p:copath(T.T;a)| 0 < copath-length(p)} seteq(set-item(copath-at(a;t);t1);copath-at(a;p))
BY
(D With ⌜copath-extend(t;t1)⌝  THEN Auto) }

1
.....wf..... 
1. coSet{i:l}
2. {p:copath(T.T;a)| 0 < copath-length(p)} 
3. t1 set-dom(copath-at(a;t))
⊢ copath-extend(t;t1) ∈ {p:copath(T.T;a)| 0 < copath-length(p)} 

2
1. coSet{i:l}
2. {p:copath(T.T;a)| 0 < copath-length(p)} 
3. t1 set-dom(copath-at(a;t))
⊢ seteq(set-item(copath-at(a;t);t1);copath-at(a;copath-extend(t;t1)))


Latex:


Latex:

1.  a  :  coSet\{i:l\}
2.  t  :  \{p:copath(T.T;a)|  0  <  copath-length(p)\} 
3.  t1  :  set-dom(copath-at(a;t))
\mvdash{}  \mexists{}p:\{p:copath(T.T;a)|  0  <  copath-length(p)\}  .  seteq(set-item(copath-at(a;t);t1);copath-at(a;p))


By


Latex:
(D  0  With  \mkleeneopen{}copath-extend(t;t1)\mkleeneclose{}    THEN  Auto)




Home Index