Nuprl Lemma : regext-lemma
∀T:Type. ∀f:T ⟶ Set{i:l}. ∀B:Set{i:l}.
  ((∃t:T. ∃g:set-dom(f t) ⟶ Set{i:l}. seteq(B;g"(set-dom(f t))))
  ⇒ (∀R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ'
        (SetRelation(R)
        ⇒  R:(B ⇒ regext(f"(T)))
        ⇒ (∃b:Set{i:l}. ((b ∈ regext(f"(T))) ∧  R:(B ⇒ b) ∧ R:(B ─>> b))))))
Proof
Definitions occuring in Statement : 
regext: regext(a), 
onto-map: R:(A ─>> B), 
mv-map:  R:(A ⇒ B), 
set-relation: SetRelation(R), 
mk-set: f"(T), 
Set: Set{i:l}, 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
set-dom: set-dom(s), 
prop: ℙ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
onto-map: R:(A ─>> B), 
mv-map:  R:(A ⇒ B), 
set-relation: SetRelation(R), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
cand: A c∧ B, 
coset-relation: coSetRelation(R), 
and: P ∧ Q, 
Wsup: Wsup(a;b), 
mk-set: f"(T), 
mk-coset: mk-coset(T;f), 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
onto-map_wf, 
seteq_inversion, 
setmem_functionality_1, 
regext_wf2, 
coSet-mem-Set-implies-Set, 
mk-coset_wf, 
seteq_wf, 
set-dom_wf, 
exists_wf, 
set-relation_wf, 
set_wf, 
subtype_rel_self, 
coSet-subtype-Set, 
setmem_wf, 
coSet_wf, 
Set_wf, 
subtype_rel_dep_function, 
mk-set_wf, 
regext_wf, 
mv-map_wf, 
set-subtype-coSet, 
regext-lemma1
Rules used in proof : 
independent_pairFormation, 
productEquality, 
dependent_pairFormation, 
productElimination, 
independent_isectElimination, 
setEquality, 
universeEquality, 
functionEquality, 
lambdaEquality, 
instantiate, 
isectElimination, 
independent_functionElimination, 
cumulativity, 
sqequalRule, 
because_Cache, 
hypothesis, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  Set\{i:l\}.  \mforall{}B:Set\{i:l\}.
    ((\mexists{}t:T.  \mexists{}g:set-dom(f  t)  {}\mrightarrow{}  Set\{i:l\}.  seteq(B;g"(set-dom(f  t))))
    {}\mRightarrow{}  (\mforall{}R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}'
                (SetRelation(R)
                {}\mRightarrow{}    R:(B  {}\mRightarrow{}  regext(f"(T)))
                {}\mRightarrow{}  (\mexists{}b:Set\{i:l\}.  ((b  \mmember{}  regext(f"(T)))  \mwedge{}    R:(B  {}\mRightarrow{}  b)  \mwedge{}  R:(B  {}>>  b))))))
Date html generated:
2018_07_29-AM-10_07_34
Last ObjectModification:
2018_07_20-PM-05_47_50
Theory : constructive!set!theory
Home
Index